ya que 05 febrero 2011 :
Vista(s): 1015 (56 ULiège)
Descargar(s): 19 (0 ULiège)
print        
Laurent Loosveldt

Fonctions continues mais dérivables nulle part : de l’effroi au printemps de l’analyse multifractale

(Volume 90 - Année 2021 — Articles)
Article
Open Access

Documento adjunto(s)

Version PDF originale

1Cet article a reçu un des deux Prix Annuels 2020 de la Société Royale des Sciences de Liège. This paper was ackwarded one of the two Annual Prizes 2020 of the Société Royale des Sciences de Liège

1. L’effroi

Image 10000000000002DD000002090FDC15B7A81BC049.png

Image 10000000000002DE000000F8BD9CDC4099665C90.png

Image 10000000000002CF00000020B97BCEE45B207D1F.png

Image 10000000000002D7000000F6A324C03E95A449D8.png

Image 10000000000002DB00000013CD4BD580158E4179.png

Image 10000000000002C600000063012EF4DE92DD3C81.png

Image 10000000000002DB00000013CD4BD580158E4179.png

Image 10000000000002D90000020F3A85BA97809F4DD5.png

2. Régularité höldérienne

Image 10000000000002D8000000581F30399D0913EFE8.png

Image 10000000000002D70000018E26D7DFE0D837BD90.png

Image 10000000000002D5000000547E0C16757759B559.png

Image 10000000000002CF00000020B97BCEE45B207D1F.png

Image 10000000000002D5000000AD2F0FFC1220393EFD.png

Image 10000000000002DB00000013CD4BD580158E4179.png

Image 10000000000002CD0000004D5BFFBFDEBED21ABD.png

Image 10000000000002DB00000013CD4BD580158E4179.png

Image 10000000000002D9000001DD5CE010A60E611B6C.png

Image 10000000000002DA0000046D479659CA60D0C702.png

Image 10000000000002DA0000046D479659CA60D0C702.png

Image 10000000000002D400000043002BC52420C62794.png

Image 10000000000002DB000004289C31C5729423177D.png

Image 10000000000002DB000003150108945D7490690F.png

Image 10000000000002DF000001BCF1C6477E64CFDDFC.png

Image 10000000000002D7000002D919E6D2497B951065.png

Image 10000000000002CF00000020B97BCEE45B207D1F.png

Image 10000000000002D8000001846C243BE5B9052EDE.png

Image 10000000000002DB00000013CD4BD580158E4179.png

Image 10000000000002D40000003E88193724D71E2A87.png

Image 10000000000002DB00000013CD4BD580158E4179.png

Image 10000000000002D700000064157E999257E69AC0.png

Image 10000000000002DD00000056D35FD010C81B9823.png

3. Vers des notions plus fines de régularité

Image 10000000000002DF0000024E2614A3E1D37D609A.png

Image 10000000000002CF00000020B97BCEE45B207D1F.png

Image 10000000000002DD0000016BD98A09E18280BDB7.png

Image 10000000000002DB00000013CD4BD580158E4179.png

Image 10000000000002D50000003F05381ED8E60F5125.png

Image 10000000000002DB00000013CD4BD580158E4179.png

Image 10000000000002E30000005E8923A8F48D740041.png

Image 10000000000002DC00000194CA7B0D82A7C2019D.png

Image 10000000000002DE000002CC9E9878691F6FE21A.png

Image 10000000000002DA0000026238ED094DE437F37C.png

Image 10000000000002DC000002933D7431E319DF853D.png

Image 10000000000002DD000003328161668910C5DFB0.png

Image 10000000000002DB0000017D4A965D0441E2B4F0.png

Image 10000000000002DE000001CD43C68D58B504B53B.png

Image 10000000000002DA00000098818DDD6D487B3A22.png

Image 100000000000030D000000A2028B3AF7D5F005A6.png

Image 10000000000002DD000001A4146785B6A3529567.png

4. Ondelettes

Image 10000000000002D90000032D229E8ED04AF44692.png

Image 10000000000002DE0000016ED855DA07559DBA59.png

Image 10000000000002DA000002A937CFB880C195633B.png

Image 10000000000002DA0000020BB31100BDC2E889A9.png

Image 10000000000002DB00000375B4A22DEA0F111803.png

Image 10000000000002E0000001899B0D21536033FBA3.png

Image 10000000000002DB0000003C385A70267EE0387E.png

5. Analyse multifractale

Image 10000000000002D9000002804CB5E3A3E46F4721.png

Image 10000000000002D800000201CFCBD13DD62CDE60.png

Image 10000000000002D800000040244B2C790E507047.png

Image 10000000000003010000005886DFE29583AFACF6.png

Image 10000000000002E00000024AA9B5767F5AD02B0C.png

Image 10000000000002ED00000019B59D9C17D2CCA339.png

Image 10000000000002DD0000011026A0788F24548037.png

Image 10000000000002DB00000013CD4BD580158E4179.png

Image 10000000000002EE00000064D4DD8281696CA644.png

Image 10000000000002DB00000013CD4BD580158E4179.png

Image 10000000000002F000000041A1093368965F97E8.png

Image 10000000000002DE000003BBD9FA29A7C74659E5.png

Image 10000000000002DC00000144453A3E0CAC503F23.png

Image 10000000000002DB00000277FC81FCE16FD85F5E.png

Image 10000000000002DA0000028086B5F5C6D4591906.png

Image 10000000000002DE000001F3713A6DEBC1ABBD27.png

Image 10000000000002ED00000019B59D9C17D2CCA339.png

Image 10000000000002DB000001216F76FE83F44D014F.png

Image 10000000000002DB00000013CD4BD580158E4179.png

Image 10000000000002D6000000DE4B8A8B4967D798FA.png

Image 10000000000002DB00000013CD4BD580158E4179.png

Image 10000000000002DF000000FFA40F94E77D35D6B5.png

Image 10000000000002DB00000219B4375CC36EE1ABC3.png

6. Remerciements

Image 10000000000002DE000000E193B96FF3D6FFCB99.png

7. Références

Image 10000000000002DB000001B5C5634E163FFD3B97.png

Image 10000000000002D900000329E3B3F5FB64FB06DE.png

Image 10000000000002D4000001D2C1FFFFA759A44F0C.png

Image 10000000000002D9000003DD1F0B27EC010B60F9.png

Notes de bas de page

Image 10000000000002D8000000208D6D2403F96585DE.png

Image 10000000000002DC00000033C242A82F55B3534F.png

Image 10000000000002D80000001B48C9F96CD9661969.png

Image 10000000000002DC000000AAE146306EA9306601.png

Image 10000000000002DE0000001B207C8401CCEF6E08.png

Image 10000000000002DC0000001D3F1CAA857462A3F5.png

Image 10000000000002DD0000006491C05E40461ADFBD.png

Image 10000000000002D30000001D7C652AFD59A4621B.png

Image 10000000000002DE0000002F804899EF9821405E.png

Image 10000000000002D900000037257CF9D2FC7DFB7E.png

Image 10000000000002E100000033A6049EF49539322C.png

Image 10000000000002DD000000376C409372E0002810.png

Image 10000000000002DF0000001F1FCC5EEFD519CA90.png

Image 10000000000002E500000017587963D8854CD345.png

Para citar este artículo

Laurent Loosveldt, «Fonctions continues mais dérivables nulle part : de l’effroi au printemps de l’analyse multifractale», Bulletin de la Société Royale des Sciences de Liège [En ligne], Volume 90 - Année 2021, Articles, 49 - 71 URL : https://popups.ulg.ac.be/0037-9565/index.php?id=10071.

Acerca de: Laurent Loosveldt

Université de Liège, Département de Mathématique – Zone Polytech 1, 12 allée de la Découverte, Bât. B37, B-4000 Liège, l.loosveldt@uliege.be ,Cet auteur est soutenu par une bourse d’aspirant du FNRS