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Description of the subject. This study evaluates the application of Boosted Regression Trees (BRT) for predicting beech 
dominant height in the Hyrcanian forests of Iran, inscribed as a UNESCO’s World Heritage due to its remarkable biodiversity.
Objectives. It is widely accepted that tree growth can be influenced by a wide variety of factors such as climate, topography, 
soil conditions and competition for resources. The early dominant height of trees modelling studies used the multiple linear 
regression. The development of more advanced non-parametric and machine learning methods provided opportunities to 
overcome the nonlinear relationships in forest ecosystems. 
Method. In this study, boosted regression trees was evaluated to model the dominant height of Fagus orientalis as the most 
important tree species in the Hyrcanian forest, Iran. Dominant height was related to soil and topographical variables, which are 
available for 190 sample plots covering all importance environmental gradients in the research area. 
Results. The results indicated BRT were found to outperform for modelling beech dominant height. This technique showed 
that phosphorus, percentage nitrogen, magnesium and percentage sand were among the most important variables.
Conclusions. This study demonstrates the ability of BRT to accurately model the dominant height of oriental beech in relation 
to environmental predictors, and encourages its use in forest ecology.
Keywords. Site quality, forest modelling, response curves, machine learning, mixed forest.

Évaluation de la hauteur dominante du hêtre oriental (Fagus orientalis L.) par rapport aux variables édaphiques et 
physiographiques dans les forêts hyrcaniennes d’Iran
Description du sujet. Cette étude évalue l’application des arbres à régression stimulée (BRT) pour prédire la hauteur dominante 
des hêtres dans les forêts hyrcaniennes en Iran, inscrites au patrimoine mondial de l’UNESCO en raison de leur remarquable 
biodiversité.
Objectifs. Il est largement admis que la croissance des arbres peut être influencée par une grande variété de facteurs tels que 
le climat, la topographie, les conditions du sol et la concurrence pour les ressources. Les premières études de modélisation de 
la hauteur dominante des arbres ont utilisé la régression linéaire multiple. Le développement de méthodes non paramétriques 
et d’apprentissage machine plus avancées a permis de surmonter les relations non linéaires dans les écosystèmes forestiers. 
Méthode. Dans cette étude, des arbres à régression amplifiée ont été évalués pour modéliser la hauteur dominante de Fagus 
orientalis en tant qu’espèce d’arbre la plus importante dans la forêt hyrcanienne, en Iran. La hauteur dominante était liée aux 
variables pédologiques et topographiques, qui sont disponibles pour 190 placettes échantillons couvrant tous les gradients 
environnementaux importants dans la zone de recherche. 
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1. INTRODUCTION

Northern forests of Iran, called Hyrcanian or Caspian 
forests, cover a relatively narrow strip in the north of 
Iran, which are among the most important and valuable 
ecosystems inscribed in United Nations Educational, 
Scientific, and Cultural Organization (UNESCO) 
World Heritage List. Hyrcanian forests are important 
sources of genetic variation, biodiversity, commercial 
woody products, and of various environmental services 
(Ahmadi et al., 2013). Covering an area of about 
1.85 million ha, these forests account for 15% of the 
total Iranian forests and 1.1% of the country’s area. 
These forests range from sea level up to an altitude of 
2,800 m and comprise various forest types, harboring 
approximately 80 woody species (trees and shrubs). 
Oriental beech (Fagus orientalis Lipsky), chestnut-
leaved oak (Quercus castaneifolia C.A.Mey.), velvet 
maple (Acer velutinum Boiss.), hornbeam (Carpinus 
betulus L.) and Caucasian alder (Alnus subcordata 
C.A.Mey.) are among the main tree species in these 
forests. Hyrcanian forests, along with similar North 
American and East Asian forest communities, are 
nowadays seen as remnants of contiguous Tertiary 
deciduous belt (Sagheb Talebi et al., 2014), and hence 
one of the world’s oldest extant forests. Today, these 
forests are regularly harvested, but their management 
is rarely based on assessments of growth, standing 
biomass or specific target forest composition and must, 
in places, be considered unsustainable. 

Sustainable forest management requires a reliable 
estimation of wood quantity and quality. For the 
range of stand densities usually targeted in forest 
management, dominant height is not dependent on 
stand density and responds little to forest thinning, so 
that it reflects site growing conditions better than mean 
height or stand basal area growth. Dominant height is 
thus considered an important variable for specifying 
stand development and predicting the growth potential 
of a site (von Gadow & Hui, 1999; Nunes et al., 2011). 
More specifically, dominant height, as proxy for growth 
potential, is affected by the soil’s chemical and physical 
characteristics, the topography and the climate at the 
stand level (Nambiar et al., 2004). Indeed, Remy de 
Perthuis de Laillevault in the 18th century proposed the 
application of height growth for assessing site quality 
in forest stands, leading to the development of a site 
index (Vanclay & Skovsgaard, 1997; Batho & Garcia, 

2006). Unlike diameter at breast height, mean height 
and volume, dominant height usually does not show 
sensitivity to silvicultural treatments and variations 
in the stand density (Curtis & Reukema, 1970; Hogg 
& Nester, 1991). The dominant height, due to close 
relationship with volume, is considered as a good site 
productivity index (Carmean, 1975; Hagglund, 1981; 
Clutter et al., 1983). A further important characteristic 
of dominant height is that its variability within sample 
plots which are used in site index studies is relatively 
low, but it shows high variability between sample 
plots; this latter component of variability is that which 
is expected to be linked to variations in the productivity 
of sites (Herrera et al., 1999).

It is widely accepted that the growth capacity of forest 
species can be influenced by a wide variety of complex 
interacting factors including climate, topography, soil 
conditions and competition for resources (Assmann, 
1970; Oliver & Larson, 1996). In both forest ecology 
(Coomes & Allen, 2007) and sustainable forest 
management (Pretzsch, 2009), an understanding of 
the variation in tree growth is important. Numerous 
studies have focused on climate, geologic, topographic 
and soil factors (Ung et al., 2001; Palahı et al., 2004; 
Seynave et al., 2005) or used indicator plants for site 
quality assessment and classification (La Roi et al., 
1988; Berger & Walther, 2006). 

Understanding the main factors affecting on high 
and low production efficiency in forest areas is essential 
for both science and industry (Pretzsch et al., 2015). 
A better understanding also may contribute to design 
of forest production systems which are very important 
in sustainable forest management (Forrester, 2014). In 
many of the early studies, assessment of forest dominant 
height was related to environmental variables using 
multiple linear regression, mostly without considering 
non-linear effects and interactions among predictors; 
similarly, heterogeneous variances and distributional 
assumptions were regularly violated (Aertsen et al., 
2010). The number and complexity of modelling 
techniques to cope with the inherent complexity of 
ecological problems has increased markedly over the 
past years (Moisen et al., 2006; Aertsen et al., 2010; 
Hegel et al., 2010). The development of advanced 
nonparametric and machine learning techniques and 
the growing availability to geodatasets with high spatial 
resolution have increased the accuracy for predicting 
forest characteristics (Aertsen et al., 2010). 

Résultats. Les résultats ont montré que les BRT étaient plus performants pour la modélisation de la hauteur dominante des 
hêtres. Cette technique a montré que le phosphore, le pourcentage d’azote, le magnésium et le pourcentage de sable étaient 
parmi les variables les plus importantes.
Conclusions. Cette étude démontre la capacité des BRT à modéliser avec précision la hauteur dominante du hêtre oriental par 
rapport aux prédicteurs environnementaux, et encourage son utilisation en écologie forestière.
Mots-clés. Qualité de la station, modélisation forestière, courbes de réponse, apprentissage machine, forêt mélangée.
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Many of machine learning algorithms have been 
used in different fields of forest science including 
classification and regression trees (CART), random 
forest (RF), boosted regression tree (BRT), artificial 
neural networks (ANN), support vector machine 
(SVM), cubist (Cubist) and multivariate adaptive 
regression splines (MARS). These data-driven 
methods have already been successfully applied to 
ecology and remote sensing to perform tasks such as 
species distribution (Alavi et al., 2019; Ahmadi et al., 
2020a). However, the applications in forest growth and 
yield prediction are still limited. Boosted regression 
trees (BRT) approach is a promising machine-learning 
technique, which is currently valuable tools for 
ecological modelling, and seems to be powerful tools 
for analyzing large datasets and identifying non-linear 
relationships (Drew et al., 2011). The performance of 
this model has been investigated by several authors 
in recent years, pointing to an overall suitability for 
a wide range of applications and data sets (Moisen & 
Frescino, 2002; McKenney & Pedlar, 2003; Segurado 
& Araujo, 2004; Elith et al., 2006; Elith & Graham, 
2009; Aertsen et al., 2010; Oppel et al., 2012; França 
& Cabral, 2015).

Oriental beech is an important late-successional and 
shade-tolerant species that occurs in mild mountainous 
or marine climates with high humidity. Although 
growing on every soil, beech trees are rare in moist and 
heavy soils (Tabari et al., 2005). The contents of loam 
play an important role in beech growth and height, so 
that the best beech forests in terms of diameter and 
height growth are located on semi-heavy and well-
drained soils with sufficient moisture (Habibi Kaseb, 
1974). Other studies found the importance of such 
characteristics as soil depth, silt, phosphorus, pH, bulk 
density and topographic variables as the main factors in 
distribution of beech communities (Salehi et al., 2005; 
Mataji et al., 2009). In terms of nutrients requirements 
of the oriental beech tree, there are contrasting studies. 
Regarding to the effects of physiography on beech 
trees, Marvi Mohajer (1976) found beech trees located 
at elevation between 900 to 1,500 m a.s.l. had the best 
status based on tree height (Marvi Mohajer, 1976). He 
emphasized the beech forests located in mid-lands of 
Caspian forests have higher forest site productivity. 
Beech trees prefer north-facing slopes and demand 
for atmosphere moisture and cool environment (Gorgi 
Bahri & Sagheb-Talebi, 1992; Sagheb-Talebi, 1996; 
Alavi et al., 2012).

About 18% of the total forest area, 30% of the 
standing volume, and 24% of the stem number in 
Hyrcanian forests in Iran are occupied by beech forests. 
Because of the importance of oriental beech as the 
most valuable wood-producing species of Hyrcanian 
forests, in this study, we evaluated the dominant height 
of this species as an important indicator of forest 

productivity in relation to physiographic and edaphic 
variables using a well-known machine learning method 
(boosted regression tree). The results of present study 
allow forest managers to identify the main drivers of 
dominant height of beech trees obtained from machine 
learning models and have sustainable planning for the 
future of these forests.

2. MATERIALS AND METHODS

2.1. Study area 

This research was conducted in Kheyroud Forest of 
Mazandaran Province, Iran. The study area is managed 
by the Natural Resources Faculty of Tehran University, 
Iran. This forest is located on the Northern slopes of the 
Alborz Mountains, about 7 km east of the little sea-port 
of Nowshar, Caspian Sea (N 36.6, E 51.8). It measures 
about 10,000 ha and extends from 0 to 2,200 m above 
sea level. This forest is divided into seven districts 
and the present research has been conducted in Patom, 
Namkhaneh, Gorazbon, Chelir and Baharbon districts 
in an area about 6,500 ha (Figure 1). Mean annual 
rainfall is 1,368 mm with maximum and minimum falls 
in October and June, respectively. Temperatures vary 
from a mean monthly minimum of 2.6 °C in January 
and February to a maximum of 29.2 °C in June and July, 
with an annual mean of 16.2 °C (Alavi et al., 2012). 
This region has a semi-moist climate with cold winters 
according to the De Martonne climagram. The study 
area’s forests are mixed and uneven-aged, dominated 
by Fagus orientalis associated with Carpinus betulus, 
Acer velutinum, Parrotia persica C.A.Mey., Sorbus 
torminalis (L.) Crantz, Quercus castaneifolia, Alnus 
subcordata C.A.Mey., Acer laetum C.A.Mey., 
Prunus avium (L.) L., Ulmus glabra Huds. and Tilia 
begoniifolia Steven species. These forests are managed 
as close-to-nature with single tree harvesting methods.

2.2. Data collection

A stratified sampling method based on landform 
extracted from DEM used to locate 190 circular 
sample plots of 0.1 ha in beech forests in the study 
area. Plots were established in sites without evidence 
of anthropogenic disturbances including forest 
harvesting. All trees with DBH > 7 cm were measured 
for diameter at breast height (DBH) using caliper to the 
nearest millimeter and total height of all beech trees 
was using Vertex IV (Haglöf, Sweden). Dominant tree 
height is defined as the average height of five highest 
trees within the sample plot. 

The summary of environmental variables are 
presented in Table 1. Slope (in %) of the plots in 
the study area was recorded by using a standard 
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Table 1. Summary of the site characteristics — Résumé des caractéristiques du site.
Variable Minimum Maximum Mean Standard Deviation
Dominant height (m) 36.27 47.60 42.71 2.82
Altitude (m a.s.l.) 470 1992 1223 299.44
Slope (%) 2 80 31 14
TRASP 0 1 0.51 0.36
Sand (%) 6.50 45.42 22.75 8.02
Clay (%) 25.51 65.51 39.71 6.59
Silt (%) 18.42 51.14 37.50 7.72
Bulk density (g.cm-3) 1.30 2.10 1.62 0.15
Nitrogen (%) 0.12 0.62 0.30 0.09
CN 9.77 20.07 12.83 1.82
pH 4.03 6.86 5.15 0.60
Lime (%) 0.63 2.29 1.15 0.24

Carbon (%) 1.57 9.36 3.86 1.45
OM (%) 2.70 16.10 6.65 2.49
Saturation (%) 43.93 55.58 49.44 1.91
P (mg.kg-1) 0.01 23.81 5.13 4.25
Ca (mg.kg-1) 24.00 608.00 166.18 124.49
Mg (mg.kg-1) 4.80 350.40 136.08 73.09
K (mg.kg-1) 151.70 754.27 345.37 117.69

Figure 1. General location of study area — Localisation générale de la zone d’étude.

a. Iran; b. location of the study area in the north of Iran — zone d’étude dans le nord de l’Iran; c. study area in the Forest Research Station 
of Tehran University, Iran — zone d’étude dans la station de recherche forestière de l’Université de Téhéran, Iran. 
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clinometer. Aspect, as the azimuth measured from 
true north, was transformed to a topographic radiation 
index using the equation TRASP = [1 – cos ((π/180) 
(θ – 30))]/2. This criterion assigns a value of zero to 
north-northeast facing slopes (typically the coolest and 
wettest orientation) and a value of one to the hotter and 
drier south-southwesterly slopes (Moisen & Frescino, 
2002; Ahmadi et al., 2020b).

For quantifying nutrient availability, five topsoil 
samples (0-20 cm) were randomly taken within each 
plot. Soil samples were mixed and analyzed in the 
laboratory. Roots, shoots and pebbles were separated by 
hand and discarded and the air-dried soil samples were 
sieved. Soil variables including physical and chemical 
properties were determined by the following methods: 
bulk density (by clod method; Plaster, 2013), texture 
by Bouyoucos hydrometer method (Bouyoucos, 1962), 
pH in water (soil: water ratio 1:2.5), total organic C 
by Walkley and Black method (Allison, 1965), total 
N by Kjeldahl method (Bremner & Mulvaney, 1982), 
the available P by using the Olsen method (Homer 
& Pratt, 1961), available K, Ca and Mg by a flame 
atomic absorption spectrophotometer (AA500F, PG 
Instruments Ltd, China), the proportion of CaCO3 (total 
lime) by the Calcimeter method (Allison & Moodie, 
1965).

2.3. Statistical methods

The number of candidate variables included in the 
final model were firstly reduced by removing highly 

correlated variables. Collinearity among environmental 
predictors were tested by hierarchical cluster analysis 
using squared Spearman correlations with the Hmisc 
package (Harrell Jr et al., 2018) in the R statistical 
software (R Core Team, 2018). In case of collinearity 
problems, one of any pair of predictors showing such 
problems should be discarded for modelling purposes 
(Draper & Smith, 1998; Dormann et al., 2013). The 
variables percentage saturation, percentage carbon and 
percentage organic matters were hence removed from 
the set of predictors. We then applied develop predictive 
model for variation of beech dominant height using 
boosted regression trees (BRT) (Figure 2).

The linear model was simplified using backward 
stepwise and bayesian information criterion (BIC), 
which considers both the goodness-of-fit and model 
complexity and penalizes model complexity more 
than the AIC (Burnham & Anderson, 2002) and has 
been argued to select for optimal explanation rather 
than optimal prediction. Classification and regression 
trees were created with the rpart package (Therneau 
& Atkinson, 2018) in the R statistical software. The 
resulted decision trees were pruned based on 10-fold 
cross-validation (McKenney & Pedlar, 2003). 

Boosted regression trees were fitted using the 
dismo package (Hijmans et al., 2017) with a fixed 
tree complexity of 3 (according to recommendations 
by Elith et al. [2008] for small datasets) and a bag 
fraction of 0.75 and learning rate 0.001 and Gaussian 
response type. The BRT model was then simplified by 
reducing the number of independent variables (Elith 

Figure 2. Hierarchical clustering using squared Spearman correlation (ρ2) of environmental variables as similarities —
Regroupement hiérarchique utilisant la corrélation de Spearman au carré (ρ2) des variables environnementales comme 
similarités.
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et al., 2008). Although the predictive importance of a 
variable can often be very insightful, most scholars are 
interested in how the variable is related to the outcome. 

2.4. Evaluation of predictive performance of 
boosted regression trees 

Since there is no independent data to evaluate the 
predictive performance of the models, 10-fold 
cross-validation method was used to measure their 
performances. In 10-fold cross-validation, the data 
are split into 10 random subsets of equal size. The 
modelling technique is then applied 10 times; each time 
one of the subsets is left out and the prediction accuracy 
is calculated by using that subset. The procedure was 
replicated 100 times. Predictive performance of derived 
models is quantified by calculating model evaluation 
measures on the predicted values for cross-validation. 
The performance of models was measured in terms 
of coefficient of determination (R2) and the root 
mean squared error (RMSE). Finally, our ecological 
interpretation of optimal model relies on the assessment 
of the relative importance of the 
explanatory variables and their 
partial plots.

3. RESULTS

In the present study, we evaluated the 
dominant height of oriental beech, 
which is one of the most abundant 
species in the Hyrcanian forests of 
Iran, using a boosted regression tree 
model and edaphic and topographic 
variables. The results showed that 
12 variables were influential, but 
phosphorus, percentage nitrogen, 
Mg and percentage sand had the 
highest effect on predicting the 
beech dominant height. Calcium 
and percentage clay were the 
least important variables in BRT. 
Large positive values indicate the 
variable is predictive, whereas 
zero or negative importance values 
identify variables not predictive 
(Ishwaran, 2007). Only few of the 
descriptors contributed noticeably 
to the estimation of beech dominant 
height, namely phosphorous, 
percentage of nitrogen, percentage 
of sand and Mg. The predictive 
performance in terms of coefficient 
of determination (R2) values of 
BRT model is in table 2. This study 

showed an improvement of ensemble method (BRT) 
with 58% in R2 (Figure 3). 

The partial dependency plots of the most important 
variables in BRT technique in beech dominant height 
variation showed that the higher dominant height 
is obtained when phosphorus and organic matter 
increase. Partial dependence plots representing the 
marginal effect of single variables using BRT model 
on estimates of beech dominant height are shown in 
Figure 4.

Table 2. Performance indices of boosted regression trees 
(BRT) — Indices de performance des arbres à régression 
stimulée (BRT).
Statistical index Boosted Regression Trees 

Calibration Validation
R2 0.85 0.54 (0.15)
RMSE (m) 1.17 1.91 (0.31)
The numbers in the parentheses are standard deviation — les 
nombres entre parenthèses sont les écarts-types.
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Figure 3. Variable importance plot generated by the BRT model — Graphique 
d’importance variable généré par le modèle BRT.
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4. DISCUSSION

In the present study, we evaluated the dominant height 
of oriental beech, which is one of the most abundant 

species in the Hyrcanian forests of Iran, using a boosted 
regression tree model and edaphic and topographic 
variables. Like other studies (Lawler et al., 2006; 
Leathwick et al., 2006; Moisen et al., 2006; Prasad 

Figure 4. Partial plots of variables included in the BRT model in order of importance on estimates of dominant height of Fagus 
orientalis Lipsky — Tracés partiels des variables incluses dans le modèle BRT par ordre d’importance sur les estimations de 
la hauteur dominante de Fagus orientalis Lipsky.

0      5     10    15    20
Phosphorus

10      20      30      40
Sand (%)

20       30        40        50
Silt (%)

4            5            6
pH

0.1          0.3          0.5
Nitrogen (%)

  10           14          18
Carbon to nitrogen ratio

0       20     40      60      80
Slope (%)

   100        300       500  
Calcium

0       100      200     300  
Magnesium

 0            0.4          0.8
Radiation index

500    1.000               2.000
Altitude 

      30     40      50      60
Clay (%)

-1.0

-2.5

0.0

-1.0

0.05

-0.05

0.1

-0.1

0.2

-0.2

-0.8

0.2

0.0

-0.2

0.3

0.1

-0.2

0.15

0.05

-0.05

0.20

0.05

-0.10

0.2

-0.2

-0.6

0.6

0.2

-0.4

0.3

0.0

-0.3

Fi
tte

d 
fu

nc
tio

n
Fi

tte
d 

fu
nc

tio
n

Fi
tte

d 
fu

nc
tio

n
Fi

tte
d 

fu
nc

tio
n

Fi
tte

d 
fu

nc
tio

n
Fi

tte
d 

fu
nc

tio
n

Fi
tte

d 
fu

nc
tio

n
Fi

tte
d 

fu
nc

tio
n

Fi
tte

d 
fu

nc
tio

n
Fi

tte
d 

fu
nc

tio
n

Fi
tte

d 
fu

nc
tio

n
Fi

tte
d 

fu
nc

tio
n



Edaphic and physiographic controls of Fagus orientalis height 269

et al., 2006; Benito Garzón et al., 2008; Lawler et al., 
2009; Pittman et al., 2009; Aertsen et al., 2010; Knudby 
et al., 2010; Leclere et al., 2011; Vincenzi et al., 2011; 
Oppel et al., 2012; França & Cabral, 2015), in this 
research, application of ensemble technique (boosted 
regression trees) provides an effective methodology 
for predicting the beech dominant height in Hyrcanian 
forests. Elith et al. (2008) highlighted some main 
advantages of BRT approach including strong predictive 
performance, reliable identification of relevant variables 
and interactions. The increasing growth of BRT 
application in ecological studies is a witness for its 
efficiency (Elith et al., 2006; Leathwick et al., 2006; Elith 
et al., 2008; Pittman et al., 2009; Aertsen et al., 2010; 
Froeschke & Froeschke, 2011; Aertsen et al., 2012; Kint 
et al., 2012). Differences in model performances may be 
attributed to their inherent properties. There are a certain 
number of assumptions in linear regression including 
normality, homoscedasticity, independence of variables 
and model linearity that are rarely met by these models 
(Zuur et al., 2009), but tree-based approaches may 
overcome these difficulties. Contrary to linear models, 
in machine learning techniques an algorithm is used in 
order to learn the relationship between the response and 
explanatory variables, then dominant patterns in data 
are found via the inputs and response observations, not 
a priori, and finally the model structure is developed 
as a direct function of that particular dataset (Miller 
& Franklin, 2002; Elith et al., 2008; França & Cabral, 
2015). Although classification and regression trees are 
inherently simple and interpretable, they have a major 
drawback; a small change in the data can often prompt to 
extensive changes in the form of the fitted tree. Therefore, 
it is somewhat difficult to interpret these trees reliably. 
This is the downside of such a simple model structure, 
thus ensemble methods could be used for solving these 
problems (Simpson & Birks, 2012). The results of this 
study also showed ensemble methods are preferred and 
superior techniques for predicting response variables 
and their superiority is attributed to the incorporation 
of nonlinearity and interaction effects, because they are 
important features and lead to lower prediction errors. 

The application of boosted regression trees model 
for prediction purposes is particular useful when 
there are complex interactions between predictors and 
response variable (in our case the dominant height of 
F. orientalis) and the possibility of highly correlated 
predictor variables. Despite the fact that there were 
some systematic differences in performance among 
methods, the BRT method shows relatively similar and 
consistent patterns in predicting F. orientalis dominant 
height. Thus, we conclude that the dominant height of 
F. orientalis in the Hyrcanian forests can be successfully 
predicted using BRT nonlinear modelling techniques. 
Therefore, we use an ensemble approaches for further 
investigation.

An important aspect in ecological modelling 
involves the evaluation and interpretation of the 
results. Phosphorus and nitrogen were the most 
important variables affecting the dominant height of 
beech tree species. Soil nitrogen and phosphorus are 
the most common macronutrients which limit the 
growth of plants under natural conditions (Liu et al., 
2014). Phosphorus is of particular importance in 
accelerating the root growth, cell division, and growth 
of meristem tissues, its limitation is associated with a 
sharp decline in tree growth. As a result, phosphorus 
deficiency will slow down or stop the growth of 
above- and underground parts of the forest trees. 
The results of this study showed that with increasing 
nitrogen content, the dominant height of beech tree 
species also increases. On the other hand, beech tree 
has a decreasing behavior relative to the C/N variable. 
The ratio of carbon to nitrogen is one of the important 
indices of mineralization and soil fertility. Increasing 
nitrogen contents and decreasing carbon to nitrogen 
ratios increase the activity of soil microorganisms and 
accelerate the litter decomposition (Habibi Kaseb, 
1992; Shabani et al., 2012); as a result, the growth 
of beech tree species increases. In the analysis of 
the response curve of beech tree, Alavi et al. (2017) 
concluded that NPK and C/N variables are effective 
indices on tree growth (Alavi et al., 2017).

The performance of species along elevation gradient 
is governed by a series of interacting biological, 
climatic, and historical factors (Colwell & Lees, 2000). 
Further, elevation represents a complex gradient 
along which many environmental variables change 
simultaneously (Austin et al., 1996). Beech tree has the 
best performance at altitudes from 1,200 to 1,700 m 
a.s.l. which is consistent with Marvi Mohajer (1976). 
It seems these altitude ranges have optimum humidity 
conditions and high productivity which resulted from 
optimal combination resource availability (Rahbek, 
1995; Rosenzweig, 1995). Having demands for cool 
climates, beech tree avoids lower altitudes, since they 
are warmer and drier. The major decline in beech 
performance at higher altitudes could be due in part 
to ecophysiological constrains, such as reduced 
growing season, low temperature and low ecosystem 
productivity in high elevation (Körner, 1998). 

It is evident that beech trees have better performance 
on north-northeast directions (typically the coolest and 
wettest orientations). In the Northern Hemisphere, 
south-facing slopes may receive as much as six times 
more solar radiation than north-facing slopes. Thus, 
the south-facing slopes have a more xeric environment, 
that is, warmer, drier and a more variable microclimate, 
than the mesic north-facing slopes (Nevo, 1997; Nevo, 
2001). Beech tree has the best performance in gentle 
slopes. The slope degree is an essential feature of 
topography in relation to runoff and soil erosion. The 
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runoff and soil loss intensity can vary with different 
slope gradients. Since the slope gradient is the main 
factor for controlling soil erosion, with increasing slope 
gradient, the amount of soil loss increases significantly 
(Koulouri & Giourga, 2007). Several authors have also 
confirmed the exponential influence of slope gradient 
on soil loss (Lal, 1976; Roose, 1977).

Soil texture as an important soil characteristic 
determines the rates of water intake, water storage in 
the soil, the amount of aeration (vital to root growth) 
and influences the soil fertility. The effects of the 
textural properties of soils are frequently reflected in 
the composition and growth rate of forest vegetation 
(Sharma et al., 2010). The result of this study indicated 
percentage sand was a more important factor than clay 
in affecting the beech dominant height. The partial 
dependence plots for these two variables are also 
interesting. The partial plots for these variables show 
that the beech tree species has the best performances in 
low clay and medium sand contents, respectively which 
is consistent with the results of Tabari et al. (2005). 
While soils high in clay are difficult to manage because 
of their great strength and sticky nature, an intermediate 
amount of clay in a soil improves its capacity to hold 
water and plant nutrient ions. A balanced combination 
of sand, silt and clay composition makes loamy soil, 
which is the best one for the plant growth (Pidwirny, 
2004) and support the luxuriant vegetation. 

This research also shows that the high pH values 
are a limiting factor on the dominant height of beech 
tree. pH of the soil directly or indirectly affects the 
growth of the tree species. The most important role of 
soil pH is controlling the solubility of nutrients in the 
soil. In other words, the ability to absorb nutrients is 
highly dependent on soil pH. Nutrients have different 
solubility at different pH values. Usually, by increasing 
the pH values, the solubility of the essential nutrients 
for the plant growth is reduced, and the deficiency of 
nutrients such as phosphorus, iron, zinc and manganese 
in the plant can be observed (Salardini, 2011; Alavi 
et al., 2017). 

5. CONCLUSIONS

Boosted regression tree model was used for evaluation 
of beech dominant height in Hyrcanian forests. Our 
assessment of the mentioned techniques based on two 
measures of accuracy showed that boosted regression 
tree model has high performance in reducing the 
prediction error of dominant height variable in these 
forests. The high flexibility of this model is attributed 
to its ability for incorporating the nonlinear and 
interaction effects. The boosted regression trees method 
with low RMSE has a good accuracy for predicting 
beech dominant height in the Hyrcanian forests. By 

reviewing the literatures and the response curves 
resulted from the different modelling approaches, the 
response curves of BRT also have better ecological 
interpretability and rationality. Boosted regression 
tree technique indicated that phosphorus, percentage 
nitrogen, magnesium and percentage sand were 
among the most important variables in predicting the 
dominant height of beech tree species in the study area. 
There are other modelling techniques, for example, 
Multiple Adaptive Regression Splines and Artificial 
Neural Networks that should also be considered for 
future evaluations of model performance, since their 
applications in ecological modelling studies have been 
gradually increasing. Nonetheless, in these techniques, 
the scientists have not much control over model fitting, 
and it is difficult to assess the relative importance of 
individual explanatory variable. Overall, machine 
learning techniques help researchers gain more 
insights, both in terms of ecological relationships and 
species spatial distributions specially in terms of forest 
modelling and yield tables. They are now considered as 
a valuable tool for improving ecological management 
and biodiversity conservation.
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