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ABSTRACT

Several methods can be used to characterize the roughness of non planar surfaces. These
surfaces, in the case of non overlapping can be represented by IR+IR functions. In this paper
we present the methods derived from mathematical morphology for functions which can be
used to analyse these surfaces. IR «IR functions can be obtained from true relief or perspective
image. These two cases are discussed in terms of anamorphosis. The basic parameters are
briefly introduced. Different morphological functions (granulometry, roughness, connectivity
number), are presented and discussed after tests on real or simulated images.
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INTRODUCTION

The characterization of non planar surfaces is very important in many fields of application as
fractography, roughness studies on metallic sheets, skin studies and so on. The choice of the
method of characterization depends on several prerequisites. The first of all is the nature of the
relief. If the non planar surfaces have overlapping parts, the relief can be described in IR’ space
and we must use, for example, 3D mathematical morphology. But, if no overlapping exists the
relief can be described by IR +IR functions. In this case, the corresponding grey tone image is
the subgraph of the function and its surface is the graph. In these conditions mathematical
morphology and stereology for functions can be used. When overlapping exists on the non
planar surface, only profilometric analysis can be used. This kind of surface appears mainly
for ductile fractures. In this paper, we shall consider only the more general case of non
overlapping and, after a brief recall on stereological measurements for functions, some general
methods will be proposed to describe non planar surfaces by mathematical morphology.

THE DIFFERENT IMAGE ACQUISITIONS

From non planar surfaces without overlapping, the grey tone images can be obtained by two
main ways. If the relief is studied by using a 3D roughness apparatus or a confocal
microscope, the grey tone image corresponds to the frue relief. The grey level gives the
altitude of each point.

If the image is obtained via a scanning electron microscope (SEM), one obtains a perspective
image where the value of each pixel does not correspond to the altitude. However, an
unknown relation exists given by the fransfer function of the apparatus. In the case of SEM
images, a very simplified transfer function has been proposed by Hénault et /. (1994) which
conserves the classification of roughness.
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When overlapping exists, the fracture surface must be cut by an approximately perpendicular
plane and the obtained profile can be observed and analysed with SEM or optical microscope.

PARAMETRIC ANALYSIS OF IK.JR FUNCTIONS

In previous papers (Coster, 1992; Hénault and Chermant, 1992), the basic parameters for
R«R functions derived from classical stereological parameters have been described.
According to the set meaning, a IR«IR function f is mainly characterized by its support Z and
its area A(Z), by the surface S(f) of its graph G(f), and by the volume V(f) of its subgraph
SG(f). The topological property of the function is given by the integral of conmectivity Ny(f)
which corresponds to the sum of the local maxima heights minus the sum of local minima
heights. Table 1 presents these parameters given in the local case.

Table 1. Local parameters for R+IR functions : II, represents an horizontal plane at level t;
the intersection is given by the threshold at level t.

Local parameter Definition Meaning
Volume per unit area Vo (f) = V(SG(f)) Mean value
of support 4 A(Z) of the function
Surface area per unit §,(f) = S(G()) equivalent to
area of support LA A(Z) surface roughness R 5(5X)
Integral connectivity number () = _[ NZ(SG(f ) mHt) dt equivalent to vertical
per unit area of support Natf) = A(Z) roughness for surfaces

These stereological parameters for IR+IR functions can be used without problem on true relief,
but their values are function of anamorphosis in other cases. Vy(f) is only used for
morphological functions like granulometry. The two last parameters can be used directly on
function or for morphological function.

CHARACTERISATION OF SURFACE BY GRANULOMETRIC FUNCTIONS

Mathematical morphology for functions

In mathematical morphology for functions, the tools can be classified in two main classes
(Chermant and Coster, 1994). The first one corresponds to filtering process. In this case, the
morphological transformation are the basic filters (opening and closing) and complex filters
like sequential filters and autodual filters. The second class is used for the segmentation
process. In this case, the watershed is the most useful tool.

For the functions, two kinds of structuring elements can be used, volumic structuring elements
(Fig. 1b,1c,1d) and flat structuring element (Fig. 1a). In the case of RxR functions, the
volumic structuring element has the same mixed (i.e. non homogeneous) dimension as the
image. For flat structuring element, the modulus of the third dimension, corresponding to the
grey level, is zero. This is the reason why these structuring elements do not change with
anamorphosis.

When a morphological filtering is used, the « absolute result » is different between original
image and anamorphosed image with any structuring element. But the « relative result » is the
same when flat structuring element is used. So, the ratio between basic measurements
performed on the transformed image and a reference (initial) image is always the same and is




ACTA STEREOL 1995; 14/1 37

independent on anamorphosis. Of course, this property is not satisfied using a volumic
element.
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Fig. 1. Main structuring elements for IR «IR functions with support digitised on a square lattice
and their neighbourhood function v(i): flat structuring element (a), volumic structuring
elements (b = pyramid, ¢ = cuboctaedron, d = rhombododecaedron).

Surface roughness and granulometry

The granulometric methods are very well adapted to describe non planar surfaces. Moreover
the granulometry is the first morphological method used (Michelland et a/, 1989; Prod’homme
et al. 1992). Granulometric transformation (Serra, 1988) is a class of basic morphological
filtering (opening or closing) when the structuring element is convex and depends on size
criterion A. The variation of A gives a family of similar structuring elements. The
granulometric distribution is then given by

G(f ) ) V(f) - [,r(kaf) i

»B] = V(f)

where y"®f is the morphological opening of the function by the convex structuring element B
of size L. With closing ¢, one obtains an antigranulometric distribution given by :
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When the structuring element is flat the granulometric distribution is independent on increasing
anamorphosis. This is very important in the case of SEM images where the signal is always
anamorphosed. These two  cumulative distributions can be derived to obtain the
corresponding histograms g(f;5) and g(f'®).

Critical studies of granulometries on non planar surfaces

To analyse the behavior of granulometric transformations on a relief or SEM image of non
planar surfaces, several kinds of image were used : simulated relief and fracture surface
observed by SEM. The first class of simulated images is obtain by using boolean functions
(Fig.3), whereas the second class (Fig.4) is built from fractal algorithm (Barnsley et al, 1988).
The SEM images used are obtained from brittle fracture of alumina (Fig.4) or ductile fracture
of steel (Fig.5). In all cases the granulometries were performed with the flat structuring
element to avoid the bias introduced by anamorphosis.

Contrary to linear filters, the opening and the closing processes are not symmetrical filter since
opening removes narrow peaks and crests whereas closing fills narrow valleys and basins. The
choice of the opening or closing to perform granulometries on a relief depends on its nature.
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In the case of boolean surface where the convex grains define the relief, the opening is the
right choice. The principal mode of the distribution (Fig. 6 curve y) corresponds to the size of
the mean primary grain, whereas the secondary mode obtained for the great values of A
corresponds to the clusters of primary grains. For the closing distribution, the mode
corresponds to the mean size of the valleys (Fig. 6, curve ¢).

Fig. 3. Simulation of a fractal surface.
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Fig. 6. Granulometric densities g(f) by Fig. 7. Granulometric densities g(f) by
opening (y) and closing (¢) for a booleean opening (y) and closing (¢) for a fractal
function. image (D=2.5).

For fractal images, (Fig. 7), the mode of the distribution by opening and closing, obtained for
the small values of A, corresponds to a problem between the algorithm defined in the
continuous space and its application in digital space. After some steps the distribution is
approximately flat and corresponds to the auto-similarity of the image. This behavior is the
same for all the fractal dimensions tested.
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In the case of alumina, the crests and the valleys are approximately symmetric. This is the
reason why the distributions by opening or closing are similar, except for the low values of A
(Fig. 8).

Finally with the ductile fracture of steels, the result is not symmetrical for opening and closing.
The mode of the distribution by closing corresponds to the mean size of the dimples (Fig. 9,
curve y), whereas the mode of distribution by opening corresponds to the mean size of the
crests between dimples, (Fig. 9, curve ¢).
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Fig. 8. Granulometric densities g(f) by Fig. 9.  Granulometric densities g(f) by

opening (y) and closing (¢) for brittle opening (y) and closing (¢) for ductile
fracture surface of alumina. fracture surface of steel.

CHARACTERIZATION BY SURFACE ROUGHNESS FUNCTION

Definition of surface roughness function

Roughly speaking, the roughness function is defined by the evolution of the surface area of the
graph as a function of the size of the gauge used to perform measurements. In the local case,
the surface area is replaced by the surface roughness parameter Sy(f) defined in table 1. To
obtain an estimation of the surface area several methods are possible, but the only one which
depends on a gauge is the Steiner method defined by the following relation :

' ‘ V( 67LBf) _ V(EkBr) &
St = 7}1?() 2M ’
where 8" is the dilated function by the structuring element AB and £"°f the corresponding
eroded function. Then, the surface roughness is obtained by the equation given in table 1. If A
does not tend towards zero, one obtains an approximate surface roughness function of A
defined by equation (4) :
V(&’“Bf) _ V(g"Bf)

)
2\

This approach is very similar to the methods used by several authors in profilometric analysis
to estimate a fractal dimension (Chermant and Coster, 1983; Chermant et a/. 1983), but
different from the fractal methods proposed by Underwood and Banerji (1986) or Baran et «/.
(1992). The absolute surface roughness function, defined by equation (5) :

S(f,%
Sq(t.AM)= AE (Z)) (5)

S(f,0) =
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depends on anamorphosis for all classes of structuring elements. This is not important for the
true reliefs, but very important for perspective images obtained with a SEM. This is the reason
why we have proposed (Gauthier et a/, 1994) another parameter called the relative roughness
and defined by equation (6) :

S(1.4)

S(.1) ©
where X is the current step of measurement and A, is the shortest step (size of one pixel).

The division of the surface area S(f, 1) by the surface area S(f, Ao) reduces the influence of the
anamorphosis. Only the transformation depends on it, like for the granulometries. If the flat
structuring element is employed then the measurement is independent on the anamorphosis
(Fig. 11). It is not the case for volumic structuring elements (Fig. 10).

Rs(f:}") =
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Fig. 10. Effect of anamorphosis on Rs(f) Fig. 11. Effect of anamorphosis on Rs(f)
function by dividing the scale of grey function by dividing the scale of grey

levels (SEM image of alumina and levels (SEM image of alumina and flat
rhombododecaedron element). element).
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Fig. 12. Relative roughness Ry(f,\) for Fig. 13. Linearized RSCs as a function of
boolean function (FB), fractal surface relative roughness Rg(f,A) for ductile
(FR), brittle fracture surface of alumina fracture surface of steel versus the size of
(B) and ductile fracture surface of steel cuboctaedron element.

(D) with flat structuring element.

Fig. 12 exhibits the relative roughness function for the four types of tested images with flat
structuring element. The shape of the Rs(f,A) is approximately the same for all the images, but
the values of this function in the case of fracture surfaces observed by SEM are closer to
fractal surface than boolean surface. This fact is often interpreted in terms of fractal model for
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fracture surfaces. The curves in figures 10 and 11, drawn according to a fractal plot, are not
linear and so cannot be described by an ideally fractal model. Underwood and Banerji (1986)
have proposed a derived model (RSC) where the fractal plot is sigmoidal to describe this
evolution. The expression of the reverse sigmoid function for Rs(f,\) is given by the following
equation 7 :

FRS(f,O)—ﬂ
RSC(R , ) =log] lo WJ = b+ mlog(}) ™

Figure 13 is obtained by the linearization of reversed fractal curve (RSC) for ductile fracture
of steel with volumic structuring element. The experimental points fit very well with a linear
variation according to equation 7. However the fit is better for the fractal image. To see the
influence of the structuring element on the results of the fractal plot, we have computed
Rs(f,1) as function of A on the same classes of images, (Fig. 14 and 15).
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Fig. 14. Relative roughness Ry(f,\) for Fig. 15. Relative roughness Rs(f,\) for
fractal surfaces with flat structuring fractal surfaces with cuboctahedron
element. structuring element.

In all the cases the slope of the curve increases with the simulated dimension. But, in the case

of flat structuring element (Fig 14), the curves do not correspond to a straight line, whereas in

the case of volumic cuboctahedron element the curves can be fitted by a linear plot, (Fig 15).

To see the influence of the shape of the structuring elements defined in Fig. 1, those have

been used on simulated fractal surfaces. The curves are drawn on Fig. 16 and 17. The

statistical data of the linear regression are presented in table 2. Some comments can be written
about these results :

- the cubic and cuboctahedron elements give the best linear regression and the lowest
residual variation, the rhombododecahedron gives the most bad result,

- the slopes obtained with pyramid, cuboctahedron and cubic element belong to the same
range of values,

- for the flat structuring element the slope is approximately twice the value of the previous
volumic structuring elements and the slope corresponding to rhombododecahedron is
approximately half the slope of the other volumic elements.

This last comment can be explained by the upper value of the neighbouring function given in

Fig. 1. The slope decreases when the « roughness » of the structuring element increases in the

same proportion. If the theoretical value of the fractal simulation is compared with the slopes,

the flat structuring element seems to give the best results. But when the size of the structuring
element tends to infinity, it is easy to proof that the slope must reach asymptotically the value

(-1) for all non planar surfaces. In the case of volumic elements, any asymptotical behavior can

be obtained independently on the nature of the surface.
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Table 2. Statistical values of linear regression for Log(Rs(f,A)) = f(Log(A)) for fractal
surface of theoretical fractal dimension 2.3, by using the Steiner method with
various structuring elements.
(100 pts Flat Pyramidal Cubocta- Cubic Rhombodo-
tested) hedron decahedron
origin 0.0632 -0.0170 0.0013 0.0010 -0.0342
slope -0.3298 -0.1815 -0.1585 -01699 -0.0864
correlation -0.9960 -0.9968 -0.9999 -0.9997 -0.9800
residual value 0.0012 0.0058 0.0008 0.0005 0.0071
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Fig. 16. Relative roughness Rs(f,A) for a
fractal surface with flat, pyramidal and
cuboctahedron structuring element.

Fig. 17. Relative roughness Ry(f,\) for a
fractal surface with flat, cubic and rhom-
bododecahedron structuring element.

FUNCTION CHARACTERIZATION BY CONNECTIVITY NUMBER
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Fig. 18. Connectivity number function

Na(t) for a boolean surface per frame
unit.
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Fig. 19. Connectivity number function

Na(t) for a fractal surface per frame unit.

The last local parameter Na(f), called most commonly « vertical roughness for surfaces » is
too general to describe correctly the peaks and basins for non planar surfaces. To describe
more accurately these morphological features, it is possible to measure the specific
connectivity mimber Na(SG(H)NIL) at each level t and draw its evolution. So one defines the
connectivity number function for a surface Na(t) = Na(SG(f)I1;) as a function of t. Figures
18 to 21 represent this new functional for the four types of analysed surfaces.




ACTA STEREOL 1995; 14/1 43

Na(t Na(t
2000 i 1000 ©
1500¢
1000} 500
500
0
0
-500b . ) . . . . -500 . . , ; .
0 50 100 150 200 250 0 50 100 150 200 250
t t
Fig. 20. Connectivity number function Fig. 21. Connectivity number function
Na(t) for a brittle fracture surface per Na(t) for ductile fracture surface per
frame unit. frame unit.

To understand the evolution of Nx(t), one must imagine that the relief is progressively
immersed in the sea. For each step of immersion, the connectivity number gives the number of
continents or islands minus the number of lakes or closed seas.

The chosen conditions for the construction of this boolean surface gives a function which
covers only 95% of the area of the support. This is the reason why the connectivity number
function starts from a negative value corresponding to residual lakes. For the other models,
one starts from a relief without water (Na(0) = 0). Afterwards, progressively the deep basin
are filled by water. With these conditions the first values of Ny(t) are negative. When the
immersion progresses, some islands are isolated from the continent and the value of Nu(t)
increases toward positive domain. This increasing stops when all mountains are isolated to
give islands. The final behavior corresponds to a decrease of the connectivity number when the
lowest islands are immersed. To resume, the minimum of the function corresponds to the
maximum number of basins and its position on t axis gives the altitude. The maximum of the
function corresponds to the maximum of peaks and its position corresponds to the altitude.
For each class of surface, the behavior is not the same : the evolution for boolean surface is
the most symmetric in opposition to fractal surface where one observes few number of little
basins and a great number of peaks. For fracture surfaces the ductile behavior gives a great
number of basins (dimples), whereas the basins correspond to triple boundaries of grains in
intergranular fracture.

Since the measurements are performed on threshold image at level t, the effect of the
anamorphosis is very well known. An anamorphosis of the image implies the same
anamorphosis of t axis. So the result is independent on anamorphosis if relative t values are
used.

CONCLUSION AND PERSPECTIVES

Mathematical morphology is very well adapted to study non planar surfaces by the image of
true relief or by perspective image. In this paper, only non overlapping surfaces were analysed
and discussed.

For this class of surface, the three basic function derived from the three corresponding
parameters were presented : granulometric functions, relative roughness function and
connectivity number function.

The granulometric function is well adapted to describe the size of the texture of the surface
and is independent on anamorphosis when flat structuring element is used.

To avoid the effect of anamorphosis the relative roughness parameter must be used in place of
absolute surface roughness. Since the surface morphology can be analysed in term of fractal
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model, the influence of the anamorphosis and of the nature of the structuring element were
analysed and discussed. To be independent on anamorphosis, flat structuring elements must be
used, but with these elements, it is theoretically impossible to estimate a fractal dimension.
Indeed, in fractal analysis, the ball which is used to test a fractal object by a covering method
must have a topological dimension equals to the dimension of the object plus one. This is the
main problem in fractal analysis when anamorphosis occurs. In the case of volumic element,
fractal analysis can be performed, but as for in granulometry or other morphological
transformations the result depends on the shape of the used structuring element.

The connectivity number function gives other knowledge on the morphology of the surface
than roughness and granulometry since it is possible to see the influence of basins and peaks
without problem of anamorphosis.

These methods described for IR+IR functions can be used directly in profilometric analysis on
non overlapping profiles or on IRxIR functions. When overlapping exists, granulometric analy-
sis with flat structuring element (segment) can be used without restriction. The roughness or
relative roughness function can be obtained by using bidimensional structuring element. Finally
the connectivity number function is given by the measure of the horizontal intercepts.
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