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ABSTRACT

This paper describes statistical properties of various estimators of intensity of anisotropic
boolean segment processes. In order to quantify the estimation variances, the pair correla-
tion function of appropriate random measures has to be evaluated. The projections of the
process on R! and intersections with a system of (d — 1)-dimensional parallel hyperplanes were
studied. Some results of Benes et al 1993 are used, where the second order stereological for-
mula for the pair correlation function of the projection measure of anisotropic fibre processes
was derived and estimation variances compared.

These results were applied to a study of soil porosity, where the earthworm burrow system were
modelled by a segment process.

The variances of these estimators were compared and the convergence of the serial section
estimator to the projection estimator illustrated. The variance of the serial section estimator
decreases rapidly when the number of sections increases and flattens out to the variance of the
projection estimator. This approximation was used to discuss the effect of the sample shape
onto the variance of length intensity estimation by using serial sections.
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INTRODUCTION

The length density is a basic characteristic of fibre processes. To estimate it, the first method
is to measure all the fibres in a given volume. However, this is generally impossible and people
use serial sections to estimate it ( Hilliard 1967, Kanatani 1984) needing IUR series of parallel
planes. Similarly, estimators based on second order stereology, needing in practice IUR random
sections or slices through fixed points, have been introduced (see Jensen & Gundersen 1989,
Kieu & Vedel Jensen 1993). More recently, specific methods have been developed when the
projection of the fibres through thick sections is possible (see Gokhale 1993, Cruz-Orive &
Howard 1991 for example).

However, IUR probes or projection of thick sections may not be available. In such cases,
sampling methods based on sections with given orientations are the last remaining methods
and an unbiased estimator is built if the rose of direction is known.
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In this paper, the variance of estimators based on sections were compared to the projection esti-
mator in the case of a stationary boolean anisotropic segment process with independent length
and orientation, supposing the distributions of segment length and orientation to be known.
This study was applied to the estimation of the length density of earthworm burrow systems.
Earthworm burrows are an essential part of the biological porosity and play an important role
in soil fertility. For experimental reasons, only horizontal or vertical sections of parallelepipeds
of soil can be practically performed. The method was then used to evaluate the influence of the
parallelepiped shape.

NOTATION

Let 2 = (7,1) be a system of polar coordinates in R3 [ = (0,4), and let dl = sin(6)d0d¢, 6
being the colatitude with respect to the vertical axis and ¢ the longitude.

Let @ be a stationary anisotropic boolean segment process in R®, with independent length
distribution H and orientation distribution R and denote \ the intensity of the Poisson point
process of segment centers. Let us suppose that 7 and R admit continuous densities k and p.
The mean fibre length per unit 3-dimensional volume in B3 is [ — \J — A g h(z)dz and its
pair correlation function p is:

o) = 1+ 0L [y~ )y ()

MEAN LENGTH ESTIMATOR

Let B be a parallelepiped having one of its faces horizontal and let u denote the vertical unit
vector. The first estimator of L is built using the definition of L. Suppose all the fibres can be
measured in B, it is

o(B) (2)

and its variance is:

var(L;) =

57 s 982 0(&) - )
A

(23)2 /(r ) g8(r,)p(1) /rw(y — 7)h(y)dydrdl

<
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where gp(z) = v(BN B_,) and p(z) is the pair correlation function of ®.
SERIAL SECTION ESTIMATOR

Consider a series (H;) of parallel horizontal hyperplanes of vertical coordinates ia. Let n be the
number of hyperplanes intersecting B. Let Ni=v(BNH;N®) be the number of intersection
points of the fibre process with B N H;. An unbiased estimator of L is

1& N;
Ly=-%—— 1 A
’ n;V(H,-ﬂB)fu ®)
where 7y, = [ | cos(u,m) | R(dm). Its variance is:
var(Ly) = é(nvar(Nl) + Zcov(N N;)) (5)
n?v(H; N B)2F2 v

i#j
cov(N;, N;) being equal to

M [ [AB 0 H) 0 (B 0 By cos(8) — a | = 5 [y p(t)h(r)dra (6)
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where v(r,1) is the vector of H; of length | 7tan(f) | and angular orientation ¢ and ty =
max(0,1).

PROJECTION ESTIMATOR

Suppose a tends to 0, then an intersection measure ®, is defined as

2,(C) = /PF(C) N, dy (7)

where C' is any borel set (Benes et al 1993) and Pr(C) is the projection of C' on the vertical
axis. We have E(®,(B)) = Lv(B)F, and an unbiased estimator of [ js

_ %.(B)
Ly = m (8)
whose variance is 7
var(la) = s [ 9a(@)u(e) - 1o (9)

where p,(2) is the pair correlation function of @,,.
Using a similar method than for evaluating p(z), one gets that the mean fibre length in the
sector s(O,7,1) under the condition that a fibre with orientation m hits the origin is:

) ’ = FuLV(s(0,7,1)) form ¢ s
Eo (s(0,m, 1) [ m) { = FuLV(s(0,7, ) + f(r) | cos(u,m)| for m € s (16)

The probability density of the tangent orientation at the typical fibre point being jE(E;—.l:ﬂ)—[p(m),
one gets
cos(u,l)? 2p(l) [oo

Pu(z) =1+ T F2 aazz ) W rh(y)dy (11)
so that o -
var(Lz) = W/(r,l) gB(r,1) cos(u,l)zp(l)/r (z — r)h(z)dzdrdl (12)

The projection estimator is the limit of the serial section estimator when a — 0. Figure 1
illustrates this convergence on the following example:
o the sampling volume is a parallelepiped of square basis of unit area and of height 10.
o the intensity of the Poisson point process of segment centers is equal to I,
o the length distribution of each segment follows an exponential law with mean length 1,
e the angular distribution is a Bingham-Mardia distribution:
(1) = cexp {—fe (cos(26) — 2cos(290))2} where ¢ is a normalizing constant. In the con-
sidered example, 6y = 0 and x — 10,

For small values of n, the intersection processes defined on each hyperplane have small correla-
tions. Therefore, the variance of the serial section estimator decreases as 1/n for small values
of n, flattens out and tends to the variance of the projection estimator when n — oo,

k-FACES ESTIMATOR.

Let Uy, k = 1..K be K faces of the sampling parallelepiped B, w a unit vector orthogonal to
Uy. Let Ny = ® N U, the number of intersecting points. An unbiased estimator of I, can be
defined as in the serial sampling estimator as

1 I Nk
L= 3 Pk
4 Kgl UATR (13)
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Figure 1. variances of the intersection estimators and the projection estimator (horizontal line)

whose variance is

1 cov( Ny, Nir)
var(Ly) = — 14
(L) = 12 (AXE u(Uk)u(Uk:)fukfuk,) (14)
where cov( Ny, Nyr) is equal to A [ [y v((Ur @ 1) N (Ups @ v1))h(r)p(1)drdl if Ui @ 7l denotes the
dilation of Uy by the vector 7/

SECOND MOMENT ESTIMATION

Let us suppose that ® is known up to a given number of parameters, denoted 6 in the following,.
Using the classical serial section estimator, LF, only can be estimated, where u is the perpen-
dicular to the sections. Estimation may then be performed using the covariances cov(Ng, Ny)
or the second moments E(NoN;) between the numbers of intersections of ® and two parallel
planar sets V; and V;, of same shape and distant of y.
Let us suppose L = G(0) , G continuously derivable, suppose the fibre process ® to be a
mixing field and denote (N;)i<;j<n the number of intersections between ® and (V;) a set of
parallel equidistant planar sets of same shape of surface area (V) and a the distance between
n—p
two consecutive sets. Then ( Guyon 1985) the vector Z, = anp (ZNfNi+k) tends in
#=1 1<k<p
probability to the vector E(Z) = E((NoNk)1<k<p) and

VA= (%0 - E(2) (15)

tends to a gaussian law of mean 0 and variance T.
Let 5

0, = argmin Z {cov(;(a,k) — Zkpn + I/(‘/)ZG(H)?.F&,YG} = argminf(4, Z,) (16)

k=1

Then, under classical regularity conditions on f and unicity of the solution of f(8, E(Z,)) = 0,
ensuring the existence of a two times derivable implicit function § = h(Z), using the convergence
property given above, one obtains ( Dacunha-Castelle & Duflo 1983):
0, tends to the actual parameters 6y in probability and \/n— p (6, — 6p) is asymptotically

t -1 -1
s ’ ‘. o 7 t(aF\! (aF aF aF
gaussian with 0 mean and covariance matrix I = (92) ( T ) r (at ) (Bz)

2
where ‘X denotes the transpose of X, (%) denotes the matrix of coefficients % and (%)
L]

the matrix of coefficients %’Q—

so that finally L,, = G(6,) tejnds to L in probability and \/n—p (L, — L) is asymptotically
gaussian with 0 mean and variance * (%) I <%

The variance of L, depends of the moments of order 4 of the process N, for whom explicit
formulas are difficult to obtain, even for simple models as the boolean segment process. Variance
estimation can then be performed by simulation, either directly or by estimating the covariance
matrix ' if the estimation procedure is time consuming.
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CASE STUDY

The full description of a natural earthworm burrow system was performed in situ with the
following method: a face, from a large pit, was rendered as flat and vertical as possible. A
column of soil (1x1x3dm) was described by destroying it little by little and every burrow segment
was characterized by the three dimensional coordinates of its extremities and by its diameter,
This natural burrow system was observed into a soil under permanent pastures; the soil is a
brown soil near Dijon (France) where the earthworm population is mainly due to Aporrectodea
longa and A. nocturna (80 % in biomass) which can be regarded as the main burrowing species.
Burrows were modeled as a stationary boolean segment process with independent length and
orientation defined as follows :

o the length is exponentially distributed

o let 0 the colatitude and 1 the longitude of a segment, the distribution function of (8, )
is modeled as p(6,1) = ceFleos2O)” where ¢ is a normalizing constant. It is an extension
of the Bingham-Mardia distribution with 8, = 0. The latter is obtained as soon as a = 2.

The intensity of the point process was estimated as A — % where N is the number of upper
segments points observed inside B obtaining A = 17.9. The angle distribution was estimated by
maximum of likelihood using the fibres whose upper point is in B, the estimated values being
& = 0.14 and & = 6.27. The mean segment length 7 was estimated as % were L is the estimated

segment process intensity, 7 = 1.09.
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Figure 2. influence of the shape (vertical dilation : left picture) and orientation(on the right)
of a parallelepiped of constant volume. plain line : classical estimator, dotted : projection
estimator, broken lines: 1 and 2 -faces parallel to the projection.

In figure 2, the left picture presents the variance of L, L3 and of the 1-face and 2-face estimators
when the sampling volume is a parallelepiped of volume 3dm3 whose vertical edge length 2z vary
from 0.1dm to 9dm. The projection vector was the vertical unit vector, the faces were two
consecutive vertical faces. var(L;) and var(Ls) have similar variations, the variance of L; being
higher to that of L3. The 1-face and 2-face estimators present also similar variations.

For small values of z, due to the flatness of the parallelepiped and the strong anisotropy of the
fibres, quite all fibres in the volume intersected its vertical face. So, the horizontal area explored
by Ly and L3 was large (it varies as 1/z) whereas the area explored by the 1-face and 2-face
estimators varied as 1/,/z and the variance of Ly and L3 was smaller than that of the 1-face
and 2-face estimators.

For great values of 2 the same volume was explored by the four estimators, the variance of Ly
and L3 tend to a plateau, before decreasing slowly to 0. The variance of the 1-face and 2-face
estimators tend sharply to 0.

The right picture in figure 2 presents the variance evolution of the same estimators when the
colatitude of the 1 x1x 3dm? parallelepiped vary from 0 to 7 /2. The face of the 1-face estimator
was chosen so that it became horizontal for a colatitude of m/2. Ly and the 2-face estimator
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are less sensitive to the angular variations. The projection estimator and the 1-face estimator,
much more sensitive to the angle of the fibres, show greater variance variations. The value at
which an estimator is better than another depends in fact on the shape of the parallelepiped.
The last method, was applied on the 1 x 1 x3dm? volume. The distance between two consecutive
intersecting planes was lmm. The estimation was performed using covariances estimated at 1,
2, 3, 4 and bem. The estimated variance was 91.

In this method, one needs to estimate all the parameters of the model. So, one can expect a
large variance. Moreover, the size of the sampling volume is relatively small when compared
with the mean size of the fibres and their orientation so that it leads to a poor estimation of
the covariances, and consequently to large estimation variances of the parameters and of the
intensity. To get a better estimation should require large samples which will give more precise
covariance estimation. This will be balanced by less constraints on the object measurement as
local angle measurements, precise location of the intersecting points and independent random
sampling.

CONCLUSION

Assuming that the length distribution and the orientation distribution of a boolean segment
process were known, we computed the variance of various estimators of the length density.
Approximating the variance of the serial section estimator by that of the associated projection
estimator when the distance between successive sections tends to 0, we studied the influence of
the shape of the explored sample on the variance of the density estimator.

When the angle and length distributions are known up to a given finite number of parameters,
statistics based on the first moments cannot be used to estimate the length density when the
process is anisotropic and if isotropic random sampling cannot be performed. Statistics based
on the second moments can then provide an asymptotically unbiased estimator, whose variance
is much more difficult to obtain.

Such analysis was carried on a soil analysis example, were serial sections along preferential
sections is the only practical sampling method.

REFERENCES

Benes V, Chadeeuf J & Ohser J. On some characteristics of anisotropic fibre processes. Math
Nachrichten, to appear.

Cruz-Orive LM & Howard CV. Estimating the length of a bounded curve in three dimensions using
total vertical projections. J Micros 163, 1991: 101-113.

Dacunha-Castelle D & Duflo M. Probabilités et statistiques. 2. Problémes & temps mobile. Masson,
Paris.1983: 286p.

Gokhale AM. Unbiased estimation of curve length in 3-D using vertical slices. J Micros 1990: 159;
133-141.

Gokhale AM. Utility of the horizontal slice for stereological characterization of lineal features. J
Micros 1993: 170; 3-8.

Guyon X. Estimation d’un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et
application au cas markovien. Actes de la 6™¢ Rencontre Franco-Belge des Statisticiens. Ed. des
Fac. Univ. de Saint Louis. Bruxelles 1985.

Hilliard JE. Determination of structural anisotropy. In Stereology H Elias edit., Springer, New-York,
1967: 219-227.

Jensen EB & Gundersen HGJ. Fundamental stereological formulae based on isotropically oriented
probes through fixed points-with application to particle analysis. J Micros 153, 1989: 249-267.

Kanatani K. Stereological determination of structural anisotropy. Int J Engin Sci 22, 1984:
531-546.

Kieu K & Vedel Jensen EB. Stereology using isotropic slices through fixed points. J Micros 1993:
170; 45-51.



