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ABSTRACT

Let P, be the regular n-sided polygon inscribed in a circle of radius 1 in the plane. The distance
from z to y induced by P, is the smallest size of the homothety of P, centered at z and containing y.
On X, simply connected planar set, the propagation function T% is defined by T%(z) = sup,ex d% (2, y)
where d%(z,y) is the geodesic distance in X, that is the lower bound of the length (induced by Py)
of the paths entirely lying inside X and linking z to y. Efficient algorithms for T% are based on the
following remark: the farthest points to any z in X may have only a few possible locations Y. In this
paper, it is shown that, as in the convex case, there exists a set Y with at most n elements, such that
T%(z) = Supycy d%(z,y). In the case of the square lattice equipped with the 4-connectivity distance,
this theorem leads to an algorithm computing the propagation function by means of at most 7 geodesic
balls, whatever the shape of X.
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INTRODUCTION

The notion of geodesic distance has been introduced in mathematical morphology to take into
account the fact that the paths linking two points (z,y) in a set X may be very long although
the Euclidean distance from z to y is small (fig. 1). The geodesic distance dx in X is defined
as the lower bound of all the paths linking z and y which are totally included in X. This
distance highly depends on the shape of X. Some mathematical properties may be found in
(Maisonneuve and Lantuéjoul, 1984), (Lantuéjoul and Beucher, 1981) or (Schmitt and Mattioli,
1994) and their use in image analysis in (Lantuéjoul and Maisonneuve, 1984).

In this paper, we study a very useful function based on the geodesic distance, introduced in
(Lantuéjoul and Maisonneuve, 1984) and called the propagation function Tx (fig. 2). It is
defined as the distance to the farthest point in X:

VzeX, Tx(z) = sup {dx(z,y) | y€ X} [1]

Function T gives rise to many morphological notions on an object X, such as:
Ends: they may be defined as the regional maxima (Maisonneuve, 1982) of Tx.
Length: the value of the global maximum of Tx is the maximal distance of two points in X
according to the geodesic distance dx.
Stretching factor (Maisonneuve and Lantuéjoul, 1984): it is defined as o(X) = 7 L*(X)/45(X)
where S(X) stands for the Euclidean surface area of X and L(X) for the previously defined
length of X.



138 SCHMITT M: ALGORITHM FOR PROPAGATION FUNCTION

All these notions correspond to the intuition we have and are very robust with respect to
noise perturbation of the boundaries of the objects.

Fig. 1. Notion of geodesic distance.

DIGITAL DISTANCES

In order to compute in practice the propagation function on images, we have to measure the
distances between pixels according to digital distances. Let us state in detail the construction
of the propagation function in the case of these metrics. The best way to study these distances
is to find a distance function in the continuous plane, whose restriction to the lattice precisely
is the digital distance.

These continuous (non-euclidean) distances depend on a regular n-sided polygon P, (n even)
inscribed in the circle of radius 1. The derived distance d™ between any two points is then:

d"(z,y) = inf{} | y—z € APy) [2

Examples are given in fig. 2. The restriction of such metrics to the lattice may be interpreted
as the distance in the sense of a weighted graph structure.

The length L(7) of a path v : [a,b] — RR? is defined as for the Euclidean distance, by
substituting to the Euclidean distance the d™ distance :

L(y) = sup {Zp:d"(‘r(si—l)»‘r(si)), =89 <8< < Sy < Sp= b} (3]

=1

Now let X be a set in the plane. The d™-geodesic distance d% associated to d™ is as usual
the lower bound of the length of paths linking z to y and totally included in X.

We know that in a simply connected closed set, for the Euclidean distance there always exists
only one path of minimal length, called geodesic arc. Under the same assumptions on X, but
for the d™ metrics, there may exist many geodesic arcs, one of them being the Euclidean one,
which may be used to compute the d"-geodesic distance d% (Schmitt, 1989).

Then the propagation function T% for d™ is:

VzeX, T(z) = sup {dk(z,y) |y € X} 4]

STRONG AND WEAK CONVEXITY

The existence of many geodesic arcs between two points leads to the definition of two distinct

notions of convexity (Mattioli and Schmitt,1992).

The strong convexity: X is strongly convex if all the geodesic arcs between points of X are
totally included in X.
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Fig. 2. Different graph structures on the hexagonal lattice and associated polygon.

The weak convexity: X is weakly convex if at least one of the geodesic arcs between points
of X is totally included in X.

Remark: the intersection of strong convex sets is a strong convex set, but the intersection of

weak convex sets is not always weakly convex (it may even be disconnected).

Weak convex set

Strong convex set

Fig. 3. Two notions of convexity for the hexagon PS¢,

THE EXISTING ALGORITHM FOR T%

The algorithm has been designed for X being a simply connected compact polygon the edges of
which are parallel to those of P,. It is based on the following idea: the farthest points cannot be
anywhere. At first glance, they are on the boundary of X. For the Euclidean distance, this set
may be minimal, as in the case of the unit disk. But for the d™ metrics, the following theorem
shows that farthest points are very rare (Schmitt, 1989):

Theorem 1: Let us denote the angle of two consecutive edges of P, by o = w(1 — %) At least
one point y mazimizing d%(z,y) has one of the two configurations (fig. 4):
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1- y is a corner point with angle < o

2- y is any point on an edge, its end points being corner points with angle o and the isosceles
triangle based on that edge and with opposite angle ™ — o being included in X .

In the convex case, more precisely, if X is weakly convex there exist at most n points verifying
the configurations stated in theorem 1.

Fig. 4. Farthest point configurations.

THE FUNDAMENTAL THEOREM

A first remark is that, for any simply connected compact X, the lower section T) =
{z, T%(z) < A} of T} are strongly d"-geodesic convex sets: T) is the intersection of all d"-
geodesic balls of radius A which are strong convex sets. In other words, T} behaves like the
opposite of a distance function defined on a weak convex set. This remark suggests that the
number of farthest points is the same, X being weakly convex or not. This is in fact true:

Theorem 2: Let X be a simply connected compact set. There ezists a set Y of cardinality less
or equal to n such that T}(z) = sup,ey d%(,9)-

This theorem is not only of theoretical interest, giving a new property of the propagation
function, but also of practical interest.

Distance function Propagation function

Fig. 5. Similarity between distance function and propagation function.

CONSTANT TIME ALGORITHM FOR T

The purpose of this section is to show how such ultimate farthest points may be computed. The
principle is to chose a point o of X, then to find the farthest point z; to o in X. Then, by
iteration, we find a sequence of points where z, is the farthest point to z,_; and so on. Due to
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the fact that we have equipped the plane with a d™ metrics, this sequence will oscillate between
a couple of points and this after at most n iterations.

For the d™ metrics, we have not been able to derive an algorithm, except for the d* metrics.
The flow chart diagram is presented in fig. 6. Starting from zo, if the sequence z, is composed
of 4 different points (a, b, ¢, d), then, according to theorem 2, it can be shown that we have
the four desired points. If not, we take the two oscillating points, say a and . We compute
max(d%(z,a),d%(z,b)) for all z on X. The global minimum of this function is a segment with
slope £%. The farthest points to the end points of this line segment (called fp and lp in the
fig. 6) build then with a and b the desired set Y.

Explanations:

- Dark arrows indicate the
computation of a farthest
point, i.e. the computa-
tion of the geodesic dis-
tance function to a point.
- T4 is computed in the im-
age named out. At each
time a geodesic distance
function is computed (say
to point y), we take the
maximum of this function
with image out. This is ex-
pressed in the flow-chart by
max(out,d(y,.)).

- fp and lp are the two end
points of the global func-
tion computed so far. This
minimum is a line segment.

max(out,d(d,.))

Fig. 6. Constant time algorithm for the 4-connectivity square lattice.

CONCLUSION

This paper states a general structure theorem on the propagation function, showing that this
function depends only on n points in the d* metrics. We have derived a constant time algorithm
for d* with 7 computations of d*-geodesic ball at most. It remains an open problem to extend
this algorithm to d® metrics (at least d° or d'? metrics on the hexagonal grid), which are more
isotropic and will lead to more reliable measurements on the objects.
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Fig. 7. Example of successive steps of the algorithm (left branch of the algorithm
presented in fig. 6). Only the level lines of the different functions are drawn.
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