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ABSTRACT

A sequential algorithm is proposed to generate uniform points over a d-dimensional do-
main. This algorithm is applicable whatever the shape of the domain and remains efficient
even if d is large. This paper presents the algorithm, proves its validity and gives bounds
for the rate of convergence.
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INTRODUCTION

The objective of the present work is to devise conditional simulation algorithms for random
sets or random functions, specifically simulations that take some prespecified values at
certain data points. To a certain extent, this amounts to generating a uniform point over
a domain which has a dimension equal to the number of conditioning data points. As this
number can be rather large (several hundred data points are not uncommon), the classical
acceptance-rejection method is usually inefficient, and consequently another algorithm is
required. The large number of dimensions suggests a stereological approach.

The stereological approach adopted here consists in simulating uniform points over a d-
dimensional domain only by generating uniform points over unidimensional bounded sets.
The idea of a stereological simulation dates back many years. It can be found in a paper
by Tur¢in (1971). There are however different ways to implement this idea and the one
considered here seems to be original.

The paper starts with a description of the algorithm and she proof of its validity. Since
the algorithm is sequential, the problem of its rate of convergence will be then addresssed.
A discussion where various implementations are compared and several generalizations are

proposed, concludes this paper.
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THE ALGORITHM

Let Do be an open subset of IR? with finite volume. Dg has an arbitrary shape. It is not
necessarily bounded, nor convex, nor even connected. The following sequential algorithm
is proposed for generating a uniform point over Do:

i) let @ be an arbitrary point in Do.

ii) generate a uniformly oriented line L passing through .
iii) generate a uniform point y over L N Do.

iv) take v = y and goto ii).

To illustrate how this algorithm works, we have taken Dg to be a two-dimensional domain,
made up of two connected components. The initial point @ has been chosen in the non
simply connected component (cf. Fig. 1.1). 1000 uniformly oriented lines have then been
generated through «, resulting in 1000 points at the first iteration (cf. Fig. 1.2). The
distribution of these points is far from uniform. Notice in particular that a high density
of points is observed along the lines through z having a short intersection with Dg. The
1000 points are used as input for a second iteration, and Fig. 2.3 to 2.6 show the evolution
of the simulation at iterations 2, 3, 5 and 10. A gradual convergence toward uniformity
is observed. The rate of convergence seems to be quite fast since uniformity has been
practically reached as early as at the 5™ iteration.

Fig. 1. Simulation of 1000 points at iterations 0, 1, 2, 3, 5 and 10.

PROOF OF THE ALGORITHM

Let X, be the random point at the n'? iteration. X, € Dy with X¢ = @. The sequence
{X,}us0 is a homogeneous Markov chain. It is ergodic since any point is accessible from
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any other at each iteration. Consequently, the Markov chain admits a unique stationary
distribution, denoted by p. Furthermore, p is the only distribution over Dy which is
invariant under the transition distribution of the Markov chain. In other words, we have

. p@)P(z,D)dz = p(D), D eB(Dy) (1)
(B(Do) is the family of Borel subsets of Dy), with

P(z,D) = P{X; € D|X, =z}. (2)
To prove the algorithm, it therefore suffices to verify that the uniform distribution over
Dp is invariant under the transition distribution. A direct calculation shows that P(z,D)
admits the density function

2 1
f(a’hy) - El(@,y,Do) l-’U — yld_l )
where wy denotes the volume of the unit ball in R, and where {(x,y, Do) stands for the

length of the intersection between Dy and the line through x and y. Since f is symmetric,
we have

y @, (3)
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and the proof has been completed. Thus, we have

1Dl

p(D) = Dol D € B(Dy). (4)

RATE OF CONVERGENCE

Let P("(z, D) be the transition distribution of order n of she Markov chain

P"(2,D) = P{X, € D|X, =z} (5)
What has been established in the previous section can be also written as
lirﬂ-loo P"(z,D) = p(D), D € calB(Dy). (6)

It remains to see how the quantity

h(2,D) = P™(2,D) —p(D), D € calB(Dy), (7)

converges to 0 as n tends to +co. This will be done under the assumption that
inf L Y) > d 0 8
A, f@y) 2 5 >0, (8)

Ty
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which holds if Dy is bounded. Integrating f(z,.) over Dq gives § < 1. Actually, some
continuity argument on f yields the stronger inequality 6 < 1.

In what follows, we are going to show that

K" (z, D)| < (1 - 6)" 9
holds for any n > 1. The proof inspired by Doob (1953) is done by induction.

Consider first the case n = 1. Define
h((L,D) = P(:IJ,D)—p(D), (10)
h(z, D) satisfies two inequalities

haD) > p(D)(6—1)26-1,
h(z,D) = —h(z,Do\ D) < —p(z,Do\D)(6§—1) <1-35,

which can be summarized into
|h(z, D)| <1 6. (11)
Suppose now that the inequality (9) is true at order n. Since p is invariant under the
transition distribution of order n, we can write
W, D) = [ K%)(z,dy) by, D). (12
0

Notice that A(") is a signed measure with a zero integral. According to the Jordan-Hahn
theorem (Neveu,1964), there exists a Borel subset D, of Do such that

D c D, = h™(2,D) >0 D C Do\D, => k" (z,D) <0. (13)
Now the positive and the negative part are separated,
W@, D) = [ K" (a,dy) by, D) W(a,dy) h(y, D), (14)
Dy Do\D»

which allows A("*1)(z, D) to be upper bounded

R (@, D) < p(Do\ D) (1 — 6)h™ (e, Da) — p(D) (1 — 8)A™ (2, Do \ Dn)
= p(Do\ D) (1 —6)h")(z, D) + p(D) (1 — 6)A™ (e, Dy)
= (1- 5)1L(")($,Dn)
< Q-6

as well as lower bounded

R (z D) > —p(D)(1 — 8)h™(z, D,) + p(Do \ D) (1 — 8§)A™) (2, Do \ Dy)
= —p(D)(1 = 8)h"™(z,D,) — p(Do \ D) (1 — 8)A ™ (x, D,,)
= —(1=6)A"(x,D,)
z ~1=6P,
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and finally

IP("“)(-T,D) _p(D)l <(1- 6)n+1, (15)

which is the desired result.

This formula suggests a fast rate of convergence, but the coefficient § can be quite small.
However, it should be pointed out that the proof does not really account for the geometry
of Do, and the obtained bounds are certainly quite loose. Practical experience shows that
the rate of convergence is faster than the formula suggests. Consider for instance the
pyramid defined in IR? by the set of inequalities @; > 0 for i = 1,...,d and T4 e
g < 1. Experiments have been carried out for several workspace dimensions, namely
d = 3,10,20 and 100. For each d value, 1000 points have been generated using 1000
iterations starting from the point of coordinates = 1/2d (i = 1,...,d). A criterion
must be introduced in order to judge the quality of the simulations. This is the distribution
function of the distance of a uniform point in the pyramid to the hyperplane of equation
Y&, 2 = 1. The theoretical curves (plain line) and the experimental ones (dotted line)
are compared on Fig. 2. The results look quite satisfactory in spite of the limited number
of measurements. It is also worthwhile mentioning that the simulation of a uniform point
using the acceptance rejection method by enclosing the pyramid within the d-dimensional
unit cube would require d! attempts on average.
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Fig. 2. Distribution function of the distance of a uniform point in a d-dimensional pyramid
to its base. From right to left d = 3,10, 20 and 100.

DISCUSSION

Turcin’s original idea was to generate lines with a finite set of possible directions.
This simplifies the determination of the linear sections, and malkes the algorithm easier to
implement. Note however that an ergodic problem can occur if the set of directions has
not been suitably chosen, especially in the case where the domain Dyg is not connected

(cf. Fig. 3).

Resorting to uniformly oriented lines has three major advantages:
i) ergodic problems are avoided,

i) the Markov chain is more mixing, which implies a faster rate of convergence,
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Fig. 3. In the case where the lines are only allowed to be either horizontal or vertical,
transitions between the connected components of Dy are not possible. The Markov chain
is not ergodic.

iii) with uniformly oriented lines, the rate of convergence depends only on the geometry
of the domain Dy.

Regarding ii), replacing lines with fixed directions by uniformly oriented lines is not the
only way to improve the mixing properties of the Markov chain. Another possibility
is to consider i-planes instead of lines. Steps ii) and iii) of the algorithm then consist
in generating a uniform point over the section of Do with an i-plane through @, the
orientation of which is either uniform or chosen at random within some prespecified set of
orientations. The larger the i value, the more mixing the Markov chain. More generally,
there is no inconvenience in working with a transition distribution that involves planes of
different dimensions. This is of special interest in the case where the domain under study
presents some degree of symmetry. Consider, for example, the cone Cy defined in IR? as
the subgraph of the function

f(z) = (1- |$I)1|x|51 @ e R"!
A fast way to simulate uniform points within Cy is to run the algorithm with "horizontal”
hyperplanes (simulating uniform points within a ball of IR*! does not cause any difficulty)
and ”vertical” lines. Since two successive simulations in the same horizontal hyperplane
or the same vertical line are useless and time consuming, the successive sections should
be taken in a sequential order and not at random.
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