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ABSTRACT

Probability distributions on orientation spaces appear frequently in anisotropic stereology (Philofsky and
Hilliard, 1967, Kanatani, 1984). In the present paper special cases of integral transformations where two
such distributions appear are studied. One corresponds to the rose of directions of a stationary random
process of geometrical objects in IR3; the other corresponds to the orientations of probes. In comparison
with earlier results (Bene$, 1995; Bene$ et al., 1995) spherical harmonics are tried to be used for the
evaluation. As an application a new formula for the variance of intensity estimator of a Boolean surface
process is obtained, based on projections.
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INTRODUCTION

In the stereology of anisotropic structures we deal with orientation distributions. These are mathematicaly
described by probability measures on the space of orientations. Let the rose of direction R be the orien-
tation distribution of a fibre or surface structure. When getting an information about the structure we
use as probes sections or projections in different orientations. Let Q denotes the orientation distribution
of probes and Fg(m) its cosine transform. The equation

L(Q,R) = /A Fg(m)R(dm) (1)

and its application will be studied in our paper. In fact the case of exponent n = 1 was thoroughly
investigated (Philofsky and Hillard 1967; Kanatani 1984) to get and invert the first order equations between
rose of directions and rose of intersections. We investigate the case n = 2 which appears in second-order
problems, e.g. when evaluating the variances of intensity estimators. A general theory based on projection
measures was developed (Bene$ 1995; Benes et al. 1995) to study anisotropic structures. The new results
in this paper are derived in the three-dimensional space using spherical harmonics for evaluation of (1) in
the case n = 2. Moreover the estimation variance of an intensity estimator based on a projection for a
Boolean model of compact surfaces is explicitly derived.

VARIANCE OF THE PROJECTION MEASURE

Let (R, B,v)? be a d-dimensional Euclidean space with Borel o-algebra and Lebesgue measure v. Let
(M, M)¢ be a measurable space of axial orientations represented by vectors on a unit hemisphere in
R4 and Q be a given probability measure on M9, The cosine transformation is defined by Fo(l) =
= [pga | cos (I, m) | Q(dm), 1 € M?. Let ® be a stationary random fibre or surface process in (R, B, v)?
(Stoyan et al., 1987) with intensity constant A\. We denote ¢ a realization of ®. For a point ¢ € ¢ we
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denote as the weight m(z) € M? the tangent (normal) orientation of a fibre (surface) at z, respectively;
R is the weight distribution called the rose of directions.

Definition. The random measure ®g on R4 defined by

Bo(B) = /B Fo(m(2))®(dz), B € B, ®

is called the projection measure.

It is interpreted as the total projection length (surface area) of the process ® in B, averaged with respect
to the distribution @ of projection orientations. Since many estimators of surface and length intensity are
derived from ®¢g with various Q (Benes, 1995), we study first the properties of ®g. Our main aim is to
get formulas for variance of ®g to be able to describe the efficiency of stereological intensity estimators.
The following regularity condition is assumed to be fulfilled whenever dealing with a pair @, R of probability
measures on M throughout the paper: For any m,! € M such that the inner product (I, m) = 0 it holds
either R({m}) = 0 or Q({I}) = 0. This ensures that projections are correctly defined.

The basic properties of ®q are well-known (Benes et al., 1995), it has intensity A\q = AFrq and the

orientation weight m(z) € M of ®¢ induced by ® has distribution Rg(L) = [, ;?%'R(dl), 1 € M. Here

The variance var®q(B) is equal to

var®g(B) = A} / 95(z)Kq(dz) - W(B)P), 3)

cf. Stoyan et al. (1987). Here gg(z) = v(B N B—;) and Kq is the reduced second moment measure of
@, Generally var®q(B) depends on the joint two-point weight distribution (Benes, 1995), we restrict
ourselves to Poisson processes where explicit results can be obtained.

Proposition 1. Let ® be a Boolean model of fibres (surfaces) which are subsets of straight lines (hy-
perplanes). Under the condilion that a fibre (surface) with orientation m hils the origin let 6 be its
probability distribution. Let Q on M be arbitrary, B € B bounded. Then

var<1>Q(B):/\///fé(m)gg(m)np(d:n)&{,"(dgo)R(dm). ()

Proof. See Benes et al. (1995).
Specially for the Poisson line (hyperplane) process and a ball B the following formulas were obtained in
Benes (1995), respectively

vardq(B) = 2 / F2 (m)R(dm) / * g5 (r)dr,
e (5)
var®q(B) = od_l,\/fg(m)n(dm)/o rd4=2gp (r)dr,

since gg(z) = gp(r,l) = gp(r) is independent on [ in polar coordinates. Here Og = %. Our aim is to
evaluate var®q (B) for a Boolean model of compact surfaces. ’

Consider ® a Boolean model with k—dimensional compact sets I in R, Let Ag denotes the distribution
of the typical set centered in the origin and H* the k-dimensional Hausdorff measure on B¢. Introduce
moreover AT the distribution on the set of centered compacts which have the weight m in origin and 5y,
the measure on B¢ defined by nKe(.) = H*(Kon.). The following measure plays an important role in
the theory of Boolean models (Rataj, 1995).

pr(Bim) = LMt e COMTERD) g ¢ s ©
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Comparing formulas (4) and (6) we obtain for a Boolean model of compact fibres (surfaces) the following
factorized formula including I>(Q, R) from (1):

Corollary 1. Under the conditions of Proposition 1 it holds

[ BI85 A9) = s (Blm).

If moreover AT' does not depend on m then iy does not depend on m and we have
_ 2
vardq(B) = A/Md F2(m)R(dm) /Rd ga(e)i (de) (7)

Proof. Formula (6) integrates Nk, (B + y) with respect to H*-volume weighted distribution which corre-
sponds to the integration with respect to 65" (7) then follows from (4).

Corollary 2. For a ball B we have
2 fe ]
vardq(B) :,\/Md ]—'Q(m)R(dm)/D a5(r)df(r), ®)

where f(r) = us(Br) and B, is a ball of radius r centered in origin.

Proof. Let B have the radius gand 0 = rg § r1 § § rn = 2q be the partition of interval (0, 2q).
Denote Cr; = {2 : ri_1 < [|z|| < r;}. Then J9B(z)f(dz) = _]'qu g9p(e)f(de) = 30, fCr; gp(z)f(dz) =
Liz198(ri)f(Cri) = Ty a5 (ri){f(Bro) = f(Bri_,)} — [ 95(r)df(r) for n — oo,

Remark. The assumption that A" does not depend on m means specially that the segment length (surface
area) is independent on its orientation which is the case frequent in real structures.

ORIENTATION ANALYSIS USING SPHERICAL HARMONICS

As it could be seen in the previous part the integral L(Q,R) = f.’Fé(m)R(dm) is the important term
for describing variances of projection measures, We tried to use spherical harmonics for its evaluation.
We restrict to the case d = 3, then it holds (using polar coordinates (6,4) € M3, where 0 denotes the
colatitude and ¢ the longitude)

R(dm) = {al” + 3" {a{" Pa(cos ) + > (@™ cos kg + 5 sin kg) Py 4 (cos 6)}} sin dd6dg,
n=1 k=1

where P, denote the Legendre polynomials, P, ; the associate Legendre polynomials and ai") s bi") deter-
mined coefficients (Smirnoff, 1951). In stereological practice the estimation of R is a hard problem, see
Kanatani(1984), Cruz-Orive et al.(1985).

In the case where R is the distribution which is symmetric around z-axis, the terms including k vanish.
Suppose that R has a density p hence R(dm) = p(8, ¢) sinfddd¢ = p(0)sin8d6d¢ due the symmetry of

R. We can write now
oo

p(8) = )" an Pn(cos), (9)

n=0

where a, = 2—"2'ﬂ Jo" p(0)Pr(cos8)dd. Using the notation Fq(m) = Fq(0, 4) we continue, cf.(1)
ks T
I(Q,R) :/ / F&(6,¢)p(6) sin0dode =
o Jo

o T pT o0 (10)
Z an /u ‘/0 .7-'5(49, ¢) Py (cos 8) sinfdodeg = Z anby,
n=0 n=0

Il
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where bp, = [ [ Té(ﬁ, ¢) Pn(cos 0) sin§dfdé.
Among the rotational-symmetric distributions we study in detail the parametric family of Dimroth-Watson
distributions with parameter £, —co < & < 400

exp(2x cos? B)

R(dm) = in AdAd 11
(dm) = R sin papay, (1
where Ug (k) = fol exp(2xkz?)dz. In this case it is

2 1 =

an = 4—71% ) exp(2x cos? 6)Pp (cos ) sin 6df =
2n+1 1 2
= — xp(2kz°) P, d

2700(x) Jo exp(2kz®) Py (z)dz

for n =0,2,... even and a, = 0 otherwise.

Proposition 2. Let (w, ) € M>, w the colatitude, 1 the longitude. Let Q(.) = &y, y)(.) corresponds to
a fized projection direction (w,v). Then for R in (11) 1t holds

cos? w + cos 2w

1
6Uo (k) /0 (32? — 1) exp(2ra?)dz.

/fg(m)n(dm) -

Proof. For @ = 6, y) it holds Fq(6,¢) = |sinf sinwcos(¢ — ) + cos § cosw|. Now multiplying fé 0, 9)
by P2n(cos)sinf and integrating over 6 and ¢, we get three terms which are

T L 1
J1 = sin? w/ cos?(¢ — ¢)d¢/ P2y (cos ) sin® §df = gsin2 w/ (1 = 2?)Pyy (2)dz
0 0 -1
™ o
Jy = sin 2w/ cos(¢ — l,b)dqb/ Pyn(cosB)sin® 6 cos8df =
0 0
™ 1
= sin Qw/ cos(¢ — gb)dzﬁ/ Pyp(z)zy/1 — 22dz
0 =i

b Ly 1
J3 = cos? w/ d¢/ P2, (cos 8) sin 0 cos? 8d = 7 cos? w/ 2% Pan(z)dz
0 0 -
Hence it follows easily that by = Zvr, by = 2 'fr(cos2 w+ cos2w) in (10) and all others ban = 0. Using

Po(z).=1 and Py(z) = $(3z? — 1) we get ag = 5= and az = ”UO(K) fo (322 — 1) exp(2xz?)dz.

We succeeded to get a closed formula which in fact can be obtained by a direct integration, too. Other
choices of @ important in practice, e.g. based on finitely many probe orientations, do not always lead to
explicit formulas.

Example. Let Q = %(6I + 6y +62) which is a natural sampling design based on three perpendicular probe
orientations. Hence it easily follows Fg (6, ¢) = §(| sin 0 cos ¢| + | sin  sin ¢| + | cos 8]) and

4 1
/ Fy(0,)d6 = 1 (x + 2sin® 0 + 4] sin 26)). (12)
0
Multiplying (12) by Pan(cos)sin@ and integrating over f we obtain for the third term in (12)
Jo |sin28| Py (cos @) sin §df = Zfil |&|v/T — 22 P2n (z)dz which is non zero for all n. To evaluate (10) by

means of spherical harmonics we need to use numerical integration for each by.
On the other hand direct integration (1) for R in (11) yields

L(Q,R) = %( WU( / (1 - o) exp(zna o+~ )/ /1= 77 exp(ine? )dr),
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which can be obtained by a single numerical integration.

BOOLEAN MODEL OF RANDOM SURFACES

In Benes (1995), Benes et al. (1995) several estimators of intensity of fibre and surface processes are
investigated, based on projection measures. Their variances are derived from the variances of projection
measures. We extend the known explicit results to the case of a Boolean surface model in IR3. Besides the
orientation factor in (8) we need to evaluate [ gg(r)df(r) assuming that B is ball.

Consider the model of Boolean random surface process in R3 where compact sets are circular disks with
random radius @. Let G(z) denote the distribution of this radius. In the first step we must evaluate the
function

£0,2) = [ oy (BO) + D)ooy, (13)

cf.(6), where Ko(z) is a disk with radius z. Denote S(r,z,y) the intersection area of two planar circles

with radii r, z, respectively, and distance y between centres. Then S(r,z,y) = w22 for = § ry § r—gz;
2 2 2 2 2

S(r,z,y) = nr? for r § 2,y Sae—rand S(ryz,y) = r? arccosu'—é'/w;” + a? arccost%fy;r - %\/ﬁ

else, where D= (e +r+y)(z+r—y)(z —r —y)(r —z —y).

Using polar coordinates we get from (13) f(r,z) = 27 Jo yS(r,z,y)dy. After a long calculation we get

nlzt 0Sz=51L,
ra) = A e 14
) n2zt + 2mz?(r? — 2?) arccos o= — (% + 22?) V422 — 2 x> = (14)
and hence
8ftrzy 10 0S4, (15)
or 4maz?rarccos = — mr?\/Az? — 2 g 2 o

According to these facts we get

Proposition 3. Let Ko be a circular disk with random radius @ having a distribution G(z) which 1s
independent on the orientation of Ko. Then for f(r) from Corollary 2

1 (o]
f(r) = 5/0 £(r,2) dG(z), (16)
where G = 7 [° y? dG(y)and

/000 g (r)df(r) = %-/000 ‘/;0 gp(r){4z%r arccos % - r?\/422 — r2}dG(z)dr. (17)

Example. Consider the Boolean model with random disks. We know that A = V(%%% is an unbiased

intensity estimator. Using (4) we can estimate the variance of this estimator.
Suppose that the disks have a fixed radius R. Then in (16) f(r) = ;}%yf(r, R), using the derivative (15)

2
Fr) = 4rarccos#—2—§—,/1—(—2LR)2, 0<r<2R
0: r> 2R.

The integral [ gg(r)df(r) is then equal to

[ aneraser = [ s {#rarccos 2 - 20 fi - () ar (1)

and tends to 27 [ rgp(r)dr for R — oo (disks tend to planes) in accordance to the second formula in

(5).
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var A

R= +oo -4/

R=10 N

N\

R=0,5 e

K=-c0 k=0 K=+o0

Fig.1: Variance of A for different values of « in (11) and R.

Let B be a ball with radius 1. In this special case we evaluate the variance var) of the intensity estimator
A for R in (11) and Q in Proposition 2. For w = 0 and intensity A = 1 we get this variance using (8), see
Fig.1.

ACKNOWLEDGEMENT
The research was supported by the Grant Agency of the Czech Republic, project no. 201/93/2172.

REFERENCES

Benes V. On second-order formulas in anisotropic stereology. Adv Appl Prob 1995; 27: 326-43.

Benes V, Krejéit P, Ohser J. Projection measures and estimation variances of intensities. Statistics 1995;
submitted.

Cruz-Orive LM, Hoppeler H, Mathieu O, Weibel ER. Stereological analysis of anisotropic structures using
directional statistics. J R Stat Soc C 1985; 34: 14-32.

Kanatani K. Stereological determination of structural anisotropy. Int J Eng Sci 1984; 22: 531-46.

Philofsky EM, Hilliard JE. Determination of structural anisotropy. J Cambr Phil Soc 1967; 27: 79-86.

Rataj J. Point processes of compact sets. Charles Univ Prague 1995; unpubl lecture.

Smirnov VI. Kurs VysSej Matématiky, tom 3. Gostéchizdat: Moskva, 1951.

Stoyan D, Kendall WS, Mecke J. Stochastic Geometry and Its Applications. Akademie Verlag: Berlin,
1987.

Presented at the 9" International Congress for Stereology, Copenhagen, August 20" to 25", 1995.



