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ABSTRACT

A design-based stereological method is presented which enables the unbiased estimation
of mean length per unit volume and of the angle distribution of spatial fibre processes
from arbitrarily directed pairs of registered parallel optical sections. The theory is illus-
trated by an application where the directional distribution of glass fibres is monitored in
a stepwise extruded polymer composite by the stereological evaluation of data obtained
by confocal scanning laser microscopy.
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INTRODUCTION

Fibrous structures are sets of long, thin, smoothly curved or linear features, embed-
ded in a three-dimensional matrix. When one abstracts from their thickness, they may
be considered as spatial fibre processes (Stoyan et al., 1987, pp. 228-256). A fibre is
a sufficiently smooth, continuously differentiable unoriented curve of finite length. A
spatial fibre process is the union of fibres, arranged in an unbounded three-dimensional
reference space according to some random mechanism. Let us consider ergodic station-
ary spatial fibre processes which are non-necessarily isotropic. In stereological studies
on fibrous structures, estimation of the intensity Ly — mean length of fibres per unit
reference volume — is of central importance. However, fibre processes with identical
Ly may be arranged in an entirely different manner with regard to their spatial and
angular distributions. The angle distribution created during processing controls impor-
tant physical properties of fibre-reinforced composites (Clarke et al., 1993). We present
a design-based approach which enables the unbiased estimation of Ly and of the angle
distribution of non-necessarily isotropic fibre processes from arbitrarily directed pairs
of registered parallel optical sections.
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MATHEMATICAL BACKGROUND

Vectorial directions (orientations) in space can be considered as "arrows” and may be
represented as points on the surface of a sphere with radius 1, which we denote as S.
Orientations are thus given by a colatitude § € [0, 7] and alongitude ¢ € [0,27]. These
angles are defined in a spherical polar coordinate system, where the z-axis coincides
with the polar axis and the zy-plane is the equatorial plane. The colatitude is the angle
between a direction and the z-axis, whereas the longitude is the angle between the
projection of the direction onto the ry-plane and the z-axis, measured counterclockwise
(Fig. 1). Agial directions can be viewed as directed, but unoriented lines in three-
dimensional space and may be represented as points on the surface of a hemisphere
with unit radius, . An axial direction may be defined by a colatitude § € [0,7]
and a longitude ¢ € [0,]. Fibre processes have axial directions, but no orientations.
The directional distribution of the process is given by the angle distribution of the
tangents to the fibres at a typical fibre point. The latter may be considered as a point
that is selected with uniform probability along all length elements of the fibres of the
ergodic process. When planes intersect fibres, one obtains intersection points. A typical
intersection point is obtained by uniform sampling of these intersection points. In
general, a typical intersection point is not a typical fibre point, because the directional
distribution of the tangents at a typical intersection point is weighted in proportion
to |cosd|. To explore the directional distribution of a fibre process, three steps are
therefore necessary: (i) estimation of the fibre directions sampled at intersection points,
(ii) estimation of the true angle distribution of the fibre process from the observed angle
distribution as measured at intersection points, and (iii) a statistical analysis of the
estimated true directional distribution of the fibres.

The angles § and ¢ can be determined without shape assumptions when a set of regis-
tered serial sections is available. One follows the fibres in two (or more) closely neigh-
bouring parallel physical or optical sections. It is necessary to know the distance Az
between the first plane and the final plane; let us denote these as the reference plane and
the look-up plane (Sterio, 1984). The coordinates (z1,y1) and (z2,y2) of the intersec-
tion points, which the sampled fibres generate in the reference plane and in the look-up
plane, respectively, are measured. Only those fibres are considered which intersect the
reference plane inside the sampling frame. The angles § € [0,7] and ¢ € [0, 7] can
be determined from the following equations: tan8 = {(Az)? + (Ay)?}/?/Az if Ay >0
(Case 1), tan(r —8) = {(Az)? +(Ay)?*}/?/Az if Ay < 0 (Case II), and tan ¢ = Ay/Ax,
where Az = 2, — z; and Ay = y; — y; (Fig. 1; Clarke et al., 1993).

To estimate the true directional distribution of the fibre process, each pair of angles
(8i, ;) must be weighted by w; = 1/| cos ;| (Stoyan, 1984, 1985). We have an unbiased
estimator of the intensity, Ly:

N
By =(1/4) 31/ Icosti] (1)

where N = the number of fibre intersections in the sampling frame and A = area of the
sampling frame in the reference plane; §; is the f-angle at the i’th intersection point.
The sum of all weights W = Efil w; is calculated, and the density function of the
pairs of angles (6;, ¢;) is estimated for the primary sample and for the weighted sample.
By classification into intervals of constant widths A = 7/M from § = 0 to § =,
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Fig. 1. Estimation of the angles § and ¢ at intersection points. Below: reference
plane with coordinates (z1,y1,21), above: look-up plane with coordinates (z2,y2,22).
Left panel: Case I with y, > y1, 0 < 6 < 7/2. Right panel: Case II with y; < y1,
T/2<60 <.

numbered ! € [1,M], and A¢ = 7/M from ¢ = 0 to ¢ = 7, numbered m € [1, M],
the pairs of angles are grouped into M? classes. In group (I,m) we find ki, pairs of
angles (6;,¢;) with (I — 1)A8 < 6; < IA8, (m — 1)A¢ < ¢; < mA¢. The densities
in the original sample are estimated by fim = kim /(N ABA@). To obtain the correctly
weighted densities, the sum of weights w; of the ki, angles, Wi,,, is calculated for each
group. The corrected densities are then estimated according to f;m = Win /(WAIAP)
and may now be compared with the probability density function (p.d.f.) of § and ¢ at
isotropy, i.e. f(,¢) = (27) lsiné.

Let us introduce the concept of complete directional randomness for uniformly and
independently distributed directions (CDR). Vectors have the property of CDR if
their orientations are distributed uniformly and independently on . Axial directions
have this property if they are distributed uniformly and independently on H. The
angular distance on S between two vectorial directions (6;, ¢;), (6;, ¢;) reads

cos a = siné; sin §; cos(¢; — ¢;) + cos §; cos b, (2)

Let us denote the cumulative distribution function (c.d.f.) of the N(N — 1)/2 angular
distances between all N different directions on § by F(a). When N random points
are independently and uniformly distributed on the surface of a sphere, F(a) is the
ratio of the area of a spherical cap, produced on § by a cone with apex in (0,0,0) and
semi-vertical angle o, to the total area of S. Thus we obtain

F(a) = (1 - cosa)/2 = sin*(a/2) (3a)

By differentiation we obtain the p.d.f. f(a) of the angular distances between all different
orientations:

fla) =(1/2)sina (3b)

To determine the angular distance § between two azial directions, edge effects must be

taken into account; note that 0 < 8 < 7/2. Consider two points A and B on H and
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place their antipodes A' and B’ on the surface of the other hemisphere. The smaller
one of the two angular distances AB = A'B' and AB' = A'B is the angle §. As the
points A, B, A" and B’ all lie on a common great circle, we have 2AB + 24'B = 2,
hence A'B = m — AB, and we obtain:

B=a if a<w/2, B=mn—a otherwise (4)

Using the same considerations as before, we obtain the desired results for CDR in the
axial case:

F(8) =1— cos B = 2sin*(8/2) (5a)
f(B) =sinf (8b)

A method to test a single sample of N equally weighted axial directions for CDR
can be derived from eq. (5a). We calculate the N(N — 1)/2 angular distances f;;
between all different directions (6;, ¢:),(6;,$;), then we use the sample c.d.f. F(B)
as an estimator of the c.d.f. F(B) of the process. In case of CDR, F(B) should not
differ significantly from (1 — cos ). Acceptance regions for CDR can be obtained by
Monte Carlo simulations. After appropriate weighting of the §;; angles (see below), the
same approach can also be used to test a spatial fibre process for CDR from samples
of directions at intersection points. However, it should not be applied uncritically to
arbitrarily small samples and to all kinds of fibre processes. If there are curved fibres, it
happens with positive probability that a single fibre is intersected twice, but independent
sampling of directions is necessary for the test. The effect should become negligible at
large sample sizes, but the minimum required number of sample elements is not known.
The test is correct if the curvature of the fibres is so small that (i) none of the fibres
hits the sectional plane twice within the window of observation, and that (ii) changes
of the local directions of the fibres from the reference plane to the look-up plane can
be neglected at the selected distance Az. These conditions always hold when the fibres
are line pieces. The test should be safely applicable in large-sample studies on rather
straight, rod-like fibrous structures; see the study on straight glass fibres below with
several hundreds of measurements per sample as a model example.

In a stereological study where the fibre directions are measured at intersection points, we
also first calculate the N(N —1)/2 angular distances f;; between all different directions
(8:,4:),(8j, ;). For the estimation of the sample c.d.f. ﬁ'(ﬂ), however, each angular
distance f;; is weighted by wi; = 1/(| cos6;|| cos 6;]). Again, F(B) should not differ
significantly from (1 — cos 8) at CDR. To analyze a set of N independently sampled
directions, we perform simulations where N' primary points are thrown onto H by
inserting independent random numbers (z1,z2), uniformly distributed within [0, 1], into
¢ = mz1, 0 = arccos(1—2z2). For each point, a third uniform random number z3 € [0,1]
is generated independently. Directions are only accepted for the secondary sample if
|cos 6] > z3. Thus the cutting process with sampling probability proportional to | cos |
is simulated. The first N points of the secondary sample constitute the tertiary, final
sample. As the mean number of secondary sample points is N'/2 because of isotropy,
but the number of directions varies between individual runs, N' should be distinctly
larger than 2N, e.g. N' =~ 2.5N. The c.d.f. F(f) is estimated for each simulation from
the tertiary sample after weighting each angular distance B;; by 1/(] cos ;|| cos 6;]). By
repeating the simulations, confidence regions for F(f) at CDR corresponding to any
desired error probability with sample size N can be determined.
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Fig. 2. Estimation ("unfolding”) of the true angle distribution of the fibre process
(right panel) from the angle distribution at the intersection points (left panel).

EXAMPLE: DIRECTIONAL DISTRIBUTION OF GLASS FIBRES IN A
POLYMER MATRIX

Glass fibre reinforced polyoxymethylene was studied in an initial state and after hydro-
static extrusion to increasing draw ratios A. In short-fibre composites, these fibres may
be considered as straight rods whose diameters are typically ~ 10 pym. The draw ratio is
the final length of the billet in the draw direction, divided by the initial billet length. In
addition to the initial billet where A\ = 1, we studied 4 extruded samples with A = 1.77,
3.65, 5.31, and 6.91 (Table I). Four transverse optical sections were used, i.e. the normal
to the sections (= the z-axis) was taken parallel to the direction along which the samples
were extruded, with a distance of 5 ym apart from each other, hence Az = 15 pm. A
confocal scanning laser microscope BIORAD MRC 600 was used at 60x objective mag-
nification at a laser wavelength of 514 nm. The final magnification at the level of the
image analyzer was 0.248 um/pixel. The setting of the confocal pinhole was adjusted to
obtain an optical thickness of 1 um. Fluorescence of the fibres was induced by chemical
coating, and 36-50 non-overlapping rectangular counting frames of individual area 191
pm X 127 pum were taken along arbitrary diameter scans on the reference plane. For
every sampled fibre, the coordinates of the intersection points (z1,y:1) and (z2,y2) in
the reference plane and in the look-up plane were recorded with an image analyzer. The
angles (6;, ¢;) at the intersection points were determined with correction of a possible
bias due to different refractive indices of immersion oil and the polymer matrix (Clarke
et al., 1993). The next step was the estimation of Ly and of the ”true” angular distri-
bution by 1/|cos 8;|-weighting of the pairs of angles (6;, ¢;), which were classified into
M? = 25 groups with constant widths A = A¢ = n/5 (Fig. 2). The function F(3) was
estimated by 1/(| cos 6;|| cos 8;|)-weighting. Thereafter 200 simulations with N’ = 1200
independent uniform random points on H were performed. Secondary samples were ob-
tained by giving each pair of angles (;, ¢;) a chance of | cos ;] to survive. The tertiary
samples consisted in the first N = 455 directions of the secondary samples; this number
was chosen because the smallest real sample of glass fibre directions had 455 elements
(Table I). From each simulation, the function F(8) was computed, and the resulting
values were ordered by size for each value of 3. Thereafter, 99% confidence bands of
F(B) for CDR corresponding to a sample size of N = 455 were obtained by using the
2nd and the 199th of the ordered F(3)-values.
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Cumulative distribution function
Table 1 1.0,
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o= 1.77
o \=3.65
x A= 5.31
a\=6.91

1.00 455 659 990 0.472
1.77 626 516 590 0.732
3.65 780 699 713 0.986
5.31 552 455 463 0.997
6.91 797 699 712 0.995 0.
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Table 1. Results of the study on the glass-fibres reinforced composite. A: draw ratio, N:
number of measured directions per sample, () 4: estimated number of fibre intersections
per unit reference area, Ly: estimated mean length of glass fibres per unit reference
volume, F(7/4): estimated probability that the angular distance 8 between the direc-
tions of two uniformly sampled length elements of the glass fibres is < 7/4. Fig. 3.
Estimates of F(B) at different draw ratios A together with the mean values and the
99% confidence bands of F(f) at complete directional randomness (C DR), obtained by
simulations based on a final number of N = 455 sampled directions. Note increasing
anisotropy with rising draw ratios, which produces clustered directions and thus rises
the probability of small angular distances.

The effect of the weighting procedure is shown in Fig. 2. The densities in the lowest and
highest class of § are lowered, and the densities in the middle range of 8 are raised. Table
I and Fig. 3 show estimates of F(3) for different draw ratios together with the mean
values and the 99% confidence band of F(3) at C DR, obtained from the simulations.
The hypothesis of C DR is rejected for all samples. The estimates of F(3) are distinctly
shifted towards the left, hence the directions are more strongly clustered than at CDR.
One finds a distinct increase of anisotropy at A = 1.77 as compared to the unstretched
sample. The other three samples are still more anisotropic, but the changes of F(5)
with increasing A become smaller and smaller at very high draw ratios. The estimated
p.dfs f (B) (not displayed) lead to the same conclusion.
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