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ABSTRACT

The structures considered in the present paper are the realisation of a stationary ergodic
random set and the problem is to estimate their specific Euler-Poincaré characteristic. The
estimator proposed here leads to unbiased results whatever the space dimension. It has been
tested on a 3D face centred cubic Bernoulli grid with densities ranging from 0 to 1. Moreover,
the variance of this estimator has been calculated experimentally for every dimension and for all
possible densities. With a large number of fields (~10000), these experimental results fit the
theoretical curves calculated for 0, 1 and 2D spaces.
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INTRODUCTION

The Euler-Poincaré characteristic (E.P.C.) or connectivity number, N, (X) measured in
R" space, provides a topological description of a set X. For a bounded set totally explored
through successive fields, a method called the « shell-correction » had been proposed to
evaluate the E.P.C. by Bhanu Prasad et al, (1989). This correction has also been applied by
Gundersen et al. (1993) for biological studies.

This method has been naturally extended to stationary ergodic random sets (Jouannot,
1994), only for which specific values of the E.P.C. [Np, NI, Na and Nv] are meaningful. These
parameters are linked, via the classical stereological relationships (De Hoff and Rhines, 1968)
(Serra, 1982), to the volume fraction of a phase [Vv] or the specific surface area [Sy] the
integral of mean curvature [My] and the integral of Gaussian curvature [Gy] of the interface.
Unfortunately, owing to edge effects, an estimator based on the « shell-correction » method is
only asymptotically unbiased for digitized sets and it leads to misleading results for small field
sizes (Jouannot and Jernot, 1993).

A new procedure of measurement leading to an unbiased estimation of the specific
E.P.C. is then presented in the following section.
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UNBIASED ESTIMATOR OF THE SPECIFIC E.P.C.

We consider a stationary ergodic digitized set X and a bounded field D belonging, for
example, to R' space. By definition:

N = lim aX0D) (1
= lim ———
poR! ID|
From the Euler formula,
Nt (XnD)=np("1)-np(*1-1) 2)

where np(“1) stands for the number of points « “1 » and n p (*1-1 ) the number of segments
« Y1-1 » inside the field D.
Combining Eq. 1 and Eq. 2 leads to :

NI(X) =P("1)-P("1-1) ®3)
where, for example,
n,(Y1-1)
P(‘1-1) = lim 22—+ 4
\ ) p>r! D] )

is the probability of occurrence of the configuration «"1-1 » inside the stationary random set. In
order to obtain an unbiased estimate of NI (X), unbiased estimates of P ("1 ) and P(*1-1 ) are
thus required.

Generally speaking, the unbiased estimator of P(B), for the configuration « B », inside
the field D

Npoy (B)

"B " Tpes|

®)
completely solves the problem of the estimation of specific E.P.C.
All the configurations « B; » to be tested lead to several different | D @ B, | field sizes.

For the sake of simplification, all the probabilities P(B; ), P(B;),..., P(B, ) have been estimated
as:

A Npep, (By)
P = —2 6
®) - Thes. ] ©
where By is a symmetrical structuring element containing all of the B; ’s.
For an image field of size (¢)* - hexagonal grid, R? - or ()’ - fc.c. grid, R® -, the
measurement field is thus respectively (/)> = (e-2)” or (/)* = (e-4)’. The practical measurements
are illustrated for R? space on Fig. 1.

SPECIFIC E.P.C. OF STATIONARY ERGODIC RANDOM STRUCTURES

The proposed estimator has been tested on the realisation of a stationary ergodic
random set. The structures are made up with points randomly placed on the nodes of a 3D face
centred cubic Bernoulli grid, each node having the same chance to belong to the structure.
Increasing the number of points, structures possessing densities ranging from 0 to 1 can be
obtained. For each density, 10000 structures of size 34 x 34 x 34 are simulated and, according
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to the procedure described above, the specific E.P.C. is measured on a 30 x 30 x 30 reference
size.
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Fig. 1 : Measurement of the specific EP.C. ona 8 x 8 binary image. The symbol « v » designates the
origin of the configuration and each configuration is taken into account only if its origin
belongs to the field of measurement (dotted line). The origin is then located by a circle.

Np=n,/P =13/(6.6)
NI={ny-n, }/L =(13-7)/(6.6.2)
Na={n,-(n,, +n,, +n,3)+(n, +ny) }/A=(13-15+4)/ (6.2.6.2.5%)

where « a » is the real distance between two a}\djacent pixels, .

Simplified expressions of the Euler formula NI = n(*1 0) /L and Na= [n Glo)-n(1,DI/A
A A

give the same results Nl =6 /L and Na = (7-5)/A.

MEAN VALUES

The mean values of the specific E.P.C. are reported as a function of the compacity in
Fig. 2a, 3a, 4a and 5a. The results fit the theoretical curves already given in Jernot and
Jouannot (1993) except that the area (R space) and the volume (R’ space) of the unit cell have
been chosen here equal to 1 instead of Y% and Y. The misleading size effect previously

observed (Jouannot and Jernot, 1993) completely disappears with the new procedure. Even
with measurement fields of size 1, a good estimation is obtained as can be seen in Tbl. 1.
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Table 1 : Experimental values (obtained from 100000 fields of size one) and theoretical ones.

Experimental Theoretical

Np 10° NI 10* Na 10* Nv Np 10° NI 10° Na 10° Nv
0.1003 90.71 72.47 49.01 0.1 90 72 48.04
0.1982 157.55 95.24 23.13 0.2 160 96 23.81
0.2982  209.63 83.80 -28.80 0.3 210 84 -29.02
0.4005  239.67 47.23 -71.75 0.4 240 48 -75.65
0.5000  249.12 -0.10 -93.76 0.5 250 0 -93.75
VARIANCES

The variance of this estimator of the E.P.C. has been calculated in R°, R!, R? and R?
spaces for each experimental density. The dispersion of the variance varying as the inverse of
the number of the fields, a large number of fields (~ 10000) must be used. The results are
presented in Fig. 2b, 3b, 4b and 5b for fields of size 30.
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Fig. 2. (a) Specific E.P.C. in R’ space, Np, as a function of the point fraction, Pp.

(b) Theoretical curve and experimental points for associated normalized variance

(P=30.30.30).

For a stationary ergodic random function with finite and non-zero integral range, the
variance evolves as the inverse of the field size (Lantuéjoul, 1991). The experimental values of
the variance have then been multiplied by the sizes of the measurement fields and are called
« normalized variance », allowing a direct comparison between different sizes.

The theoretical curves for the Bernoulli grid have also been calculated in R®, R' and R?
spaces. Let us explain the principle of the calculations for R space.

We assume that the measurements can be made inside a field D/ of size /. NI is

estimated from : ICH(X) =np ("10) /1

The random function ( Zx, x € D/) is introduced :

Zx =1 if the configuration ("1 o ) appears at the point x,
Zx =0 otherwise.

The estimator of Nl is then rewritten as :

NI(X) = & 3 7x,

1 x € DI
This estimator, leading to the theoretical formula, is unbiased :

A 1
ENIX)} = 7 ZDIE{ZX} = E{Zx} = p(1-p)  where p is the concentration of points.
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Then, the associated variance is equal to : Var{ICH(X)} =E {ICII(X)Z} -[E {NAl(X)} I

A 1
with  ENI(X)’} = 5 X E{Zx.Zy} .
I x,y € DI
NI = f( L1)
d
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Fig. 3.

(a) Specific EP.C. in R' space, NI, as a
Junction of the lineal fraction Ll.

) Theoretical curve and experimental
points  for associated normalized
variance (L=30).

(c) Theoretical variances for different

sizes.
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Fig 4:

(a) Specific E.P.C. in R? space, Na, as a
Junction of the area fraction Aa.

)] Theoretical curve and experimental
points  for associated normalized
variance (A=30.30).

(c) Theoretical variances for different

sizes.
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The value of E{Zx.Zy} depends on the relative positions x and y :
if|ly-x|=0 E{Zx.Zy} = E{Zx} = p(l-p)
ifly-x|=1 E{Zx.Zy} =0
ifly-x|>1  E{ZxZy} = E{Zx}. E{Zy} = [ p(1-p) T

This leads to : Var{ﬁ](X)} = Iiz Ip(1-p)+0+(@* -31+2) [ pi-p) |* ] [p-p) ]’

The same calculations have been performed for R” and R* using ( ;‘ o ) and (Vl ol )in
the case of two-dimensional space (hexagonal grid). Using o = p(1-p), we obtain :

Var(Np(X)) xP = o[ 1 1
Var(NI(X)) xL= o[ 1 — 300 " % (2a1) 1 ®
Var(Na(X)) xA = o[ 1 - 9o +26a2 + ; (8o —320%) + %2 (-20. +10a%) ] 9)

In Eq. 8 and Eq. 9, the terms depending on (1//) and (1//%) are due to edge effects
appearing only for small field sizes as can be seen on Fig. 3¢ and 4c. For / = 30, these effects
are neglectible.

Nv = f( Vv ) Var(Nv)*V = f( Vv )
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Fig. 5. (a) Specific E.P.C. in R’ space, Nv, as a function of the volume fraction, Vv.
(b) Experimental points for associated normalized variance (V=30.30.30)

DISCUSSION

In two-dimensional space, the decomposition used for the simplified Euler formula (cf.

Fig. 1), i.e. the difference between ( ;‘ o) and (vl o' ), corresponds exactly to the tangent
count method applied on a digitized structure. This establishes a link between the classical
stereology and the mathematical morphology based on structuring elements.

In continuous three-dimensional space, according to De Hoff (1987), the « volume
tangent count » allows an unbiased estimation of the E.P.C. from two closely spaced planes
(unfortunately, its practical application seems questionable). The same result is observed here
for a digitized structure : identical mean values are obtained on measurement fields of size
30 x 30 x 30 and 165 x 165 x 1 starting from 32 x 32 x 31 and 167 x 167 x 2 images.
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