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ABSTRACT

This paper is a short review of some basic principles of
statistics that is useful in stereology and morphometry. The
chapter I deals with sampling theory concerning the stereolo-
gical analysis of microstructures. The problem is how to con-
struct optimal estimators and how to estimate optimal sample
sizes in several stages of a sampling design. The chapter II
deals with the numerical study of the reliability of measure-
ments obtained by methods above. It is concerned with two
kinds of coefficients that indicate the degree of that relia-
bility: the intraclass correlation coefficient (ICC) for con-
tinuous measurements and the kappa coefficient for discrete
measurements.

I. ON SAMPLING THEORY CONCERNING THE STEREOLOGICAL ANALYSIS
OF MICROSTRUCTURES

0. Introduction

The quality of the estimation of the stereoclogical para-
meters of microstructures is usually measured in terms of
a) bias and b) variance of the final estimator:

a) The bias dépends upon the sampling design adopted and
upon the statistical model underlying the sampling design. Wo
manipulation of the sample data will reveal the bias, as it is
known from mathematical statistics.

k) The variance depends also upon this statistical model
and, in addition, upon the sample sizes in several sampling
levels.
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Now, the problem is (1) how to construct optimal stereolo-
gical estimators, and their variances, from replicted observa-
tions; and (2) how to estimate optimal sample sizes which mini-
mize the variance of the estimator to be considered,for a given
cost.

1. The principles of hierarchical sampling designs

In the stereological analysis of microstructures there can
be two kinds of hierarchical sampling designs: a nested design
and a cascade design.

(i) A nested design (by Sokal & Rohlf, 1969) is carried
out in several stages. For example, we have n microscopic sec-
tions, which constitute the first stage. But in several cases
these sections cannot be observed as a whole of the required
final magnification. Consequently, each section must be sub-
sampled by a number of microscope fields or micrographs (quad-
rats), which can be analysed as a whole. This subsampling is
called the second stage. In general, we can have ny animals
as the first stage, np blocks from some organ of each animal
as the second stage, ng sections from each block as the third
stage and so on.

(ii) A cascade design (by Cruz-Orive & Weibel, 1981) is
based on two preliminary factors, which must be taken into
account:

- firstly, very often, observing and measuring the object
phase of ultimate interest (denoted by {, say) in a section
requires a high final magnification;

- secondly, a global stereological parameter Y = Y () is
best estimated via an intermediate ratio to the volume of a
reference phase, which contains {I.

Then, Y can be estimated if the volume of the reference phase
is known.

Taken together, these two factors pose the initial question of
how to make an optimum choice of the reference phase, or a
"cascade" (serie) of several reference phases at different mag-
nifications. The final parameter is then estimated as the pro-
duct of the intermediate ratios with the volume of the specimen,
which is estimated independently. Each level in this design
(also called multi-level design) can be regarded as an indepen-
dent sampling design.
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Example: (Cruz-Orive & Weibel, 198l) Consider the estimation

of the total capillary surface area in a given lung. The phase
of interest, capillaries (denote by 93), is contained in the -
thin walls (fly) between the air spaces, which together consti-~
tute a foam-like domain called lung parenchyma (Ql). Coarser
structures ("non-parenchyma") bind the subdomains of parenchyma
to make the whole lung (fg). Now, the phase 13 is rather in-
homogeneous within g, representing only a small volume fraction
of it (0.04-0.09). So a section for electron microscopy (which
must be used) is necessarily small, and reducing the variance of
the estimator of Y(f3) would reguire a large number of sections,
this rendering the sampling design too expensive, Also, there

is a danger that Y(Q3) will become overestimated. So, it is nec-
essary to know more specific properties of the different phases
S0, 971, S0 and Q3 .in order to construct a suitable sampling design:

(i) The non-parenchymal phase is observable at a low magni-
fication M; in a section through Qo. The parenchymal volume frac-
tion V(Ql)/V(QO) is usually high (about 0.8 or more).

(ii) The phase )5 can be regarded as a system of septa ex-
tending all over the containing phase (] with a varying degree
of homogeneity. 1In a section, {l has to be observed by light
microscope at least (the magnification M»=100x to 200x). The
volume fraction V(f3)/V(f}]) may vary between 0.10 to 0.15 in
different specimens.

(iii) Identifying the phase of interest §l3 in a section re=-
quires a final magnification M3=7000x or more. Now, the volume
fraction V(Q3)/V(Qz) is of the order of 0.4-0.7, which means that
Q3 is fairly abundant within {l3. These properties and circumstan-
ces suggest a three-level, "cascade" sampling design: At the first
level, the ratio R1=V({)1)/V(§}g) is estimated at a low magnifica-
tion; at the second level, R2=V(Qz)/V(Ql) is estimated by light
microscope and at the third level, R3=Y(fl3)/V({l3) is estimated by
electron microscope. Finally,

Y (£23) =V (§0) *R{*Ry°R3.

The ordinary ratio-ofsums estimator of the ratios R;, R, and R,

is based on point countings from uniformly positioned (integral)
test systems of independent uniform random sections (IUR-sections).
This estimation method is very optimal in the case of replicated
ratio sampling, as Jensen & Gundersen, 1982, shows. How to gener-
ate IUR-sections and uniformly positioned test systems, see Cruz-
Orive & Weibel, 1981, and Weibel, 1979.
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2. Optimum sampling sizes at the different stages of a nested
design

Each of the levels of a cascade design can be studied sepa-
rately and, if necessary, using a nested design (how to allocate
the sampling sizes for a given cost when all these levels will
be taken together, see Cruz-Orive & Weibel, 1981).

The aim of a sampling design is to obtain maximal amount of
quantitative structural information at a given total cost or ef-
fort. Gundersen & @sterby, 1981, discuss principles of such op-
timal designs and illustrate methods for generating them.

In general, the variation between different sampling units
at the highest stage of a nested design is the major determinant
of overall efficiency, whereas the variation between single mi-
croscopic features is less important. The expenditure of time
and/or money in order to increase the precision of the individual
measurements (at the lowest level) is irrational in almost all
studies where the emphasis is, for example, on the biological
results.

If we denote by Og2 the observed variance between n patients
(or blocks if we have only one patient) and by X their average
value, the aim is to reduce the relative standard error RSE =
'6;37(2’“5 to the level 0.1, say. For example, a little increase
in the number of blocks and/or sections may reduce Og2 signifi-
cantly. But even a marked increase in the number of fields in
sections or in precision in measuring them may not cause suffi-
cient reduction in Og2.

3. Sampling by point counting methods

As Jensen & Gundersen, 1982, shows, the fact that the esti-
mation is based on counts (as opposed to complete 2-d observations)
does not necessarily mean a reduction in information. For certain
types of stereological ratios, the ordinary ratio-of-sums estimator
based on complete observation has shown even to be less accurate
than that based on simple and fast counting.

If it is not possible to have a sufficiently great number of
patients and/or blocks, then one must pay attention, especially,

to the precision of the measurements in lower stages.

a) The computation of the number of test points in estimation of Vg, :
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Here we are sampling, from a microscopic section, for pro-
portions between two spaces: the object space (also called object
phase or structure) a and the containing space (phase, structure)
c. A certain number P. of test points is applied to the contain-
. ing space, and for each point it is determined whether it is in
a or not. The number of test points which are in a is denoted by
P5-. Now Vi, equals to P5/P. the more accurately the greater is P.
Here P, is a random variable having binomial distribution with
parameters P and V,,. Hence, the expectation of Pp=Pa/Pc is Vg
and its standard deviation is e

sp= |[V, (1-Vy) /P, which can be estimated by Py (1-Pp) /P .

One way of judging that P, is sufficiently large is to com-
pute the relative standard error of Pp

RSE (P

for several values of Py adding the number of quadrats and/or

sections until RSE remains under 0.l. Another way is to apply

the normal approximation of binomial distribution and compute a
confidence interval for V,, which is in the form

-7 +spiv £ .
P =% SDEVyEPp+Z “SD.

Here V;, in the formula of SD must be estimated from a pilot sur-
vey, for example, and iZa are the abscissas of the normal curve,
which cut a total area fraction O at the tails. For 0=0.05 (95 %
probability of being within confidence interval) ZO 05=l.96,
ZO.Ol=2'57 etc.

If we want that the deviation 24°SD is at most 4 % of the
true Vv’ we must have

2 A
z 1-v
> & v
Fe a2 0
v

where A is the estimated (in a pilot survey) Vv'

Remark. For some problems concerning e.g. the optimal density of
test points, the inhomogeneity of the object space and the section
thickness, see Weibel, 1979.
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b) The computation of the test line length in estimation of Syt

The lines of a square lattice (grid) may be used to estimate
the surface density S, if components (of the object space) by
counting the intersections I, with profile boundaries. In a co-
herent test system (a test system formed by a lattice of fundamental
figures) Sy, is connected to the total test line length L. Sy
equals to 2I_/Lt the more accurately the greater is Ly-

Now I, is a random variable with a Poisson distribution, depending
on the true S;,. The standard deviation of I, can be estimated by
VE;; hence the relative standard error of the estimator Sy=2I_/Ly
is SD(SV)/SV=1/Vf;l In cases of non-contiguous convex particles

of low volume and surface density the formula RSE(SV)=VZ/Ia is re-

commended (see Weibel, 1979). Now we get that

Ly 2 4
Sy RSE2

if RSE is wanted to be lower than RSE; and §v is an estimated Sy
(by a pilot survey, for example).

II. DERIVING COEFFICIENTS OF INTERNAL CONSISTENCY OF MEASUREMENTS
0. Introduction

The quality of data critically depends on the reliability
with which primary observations are assigned to categories, scaled,
or measured. This chapter is concerned with the numerical study
of that reliability (also called reproducibility, repeatability,
internal agreement etc.) which in this paper is called internal
consistency.

This is a difficult field, but a field of growing importance.
For example, the recent rapid increase in data-cathering in the
social and medical sciences is containing several variables which
are difficult to measure. In order for such data to be empirically
meaningful, a "high"-degree of internal consistency must be demon-
strated.

The problem is to asses the discrepancies between repeated
measurements of the same experimental unit and to express the re-
sults in a concise way. We are concerned with two kinds of coef-
ficients to indicate the degree of the internal consistency of
those measurements: the intraclass correlation coefficient (ICC)
for continuous measurements and the kappa-type coefficient for
discrete measurements. These coefficients seem to be the most
useful in practice.
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The confidence intervals of these coefficients are of major
importance. The normal theory and the jackknife procedure will
be used. The author also suggest some lables to be assigned to
the corresponding ranges of the ICC, similar to that of the kappa
coefficient suggested by Landis and Koch (1977).

In what follows, the experimental units are referred as
"persons" and the repeated measurements are referred as "instru-
ments". (For example, the instruments may be the repeated scal-
ings by one observer). The data format in this paper is always
as in Table 1.

Table 1. Notation for analysis of measurements

Instruments
Persons 1 2 tt m means
1 11 *1 *1m By
2 *21 %22 *om Ay
1 *1 %io Xim By
n an Xn2 Xnm An
Means Bl B2 see Bm T

For an introduction to reproducibility problems in medical
diagnostics, see Collan, 1982.

1. The ICC in the one-way model

Techniques for the numeric¢al study of internal consistency
of continuous measurements Xis are mainly based upon the ana-
lysis of variance and the estimation of variance components. For
the general theory of variance components see e.g. Searle, 1971.

It is also referred to Cochran, 1968 and Bartko, 1966.
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The simplest case is the one-way random effects model. Here we
have m repeated independent measurements by one instrument, for
each person. The usual assumption is the model

(1) xij=u+ai+eij (i=1,..., n; j=1,...,m),

where u is the overall effect common to all observations; a 1is
a random variable, with zero mean and variance Oa common to the
i:th person and ejy is the random error, with zero mean and var-
.iance Ogr associated with observation (i,j) and independent of
aj. The usual analysis of variance table is given in Table 2.

Table 2. Analysis of variance: One-way random model

Source of Degrees of » Sums of Mean Expected

variation freedom squares squares mean squares
2 2

Persons n-1 SSA MSA Oe + m°03

Error n(m-1) SSE MSE o2

Total nm-1 SST

on m — 2
Here SST = L, .1 ( -T)

SSA = m2

SSE = SST-SSA,

and the mean squares are obtained by dividing the sums of squares
by the corresponding degrees of freedom. From the expected mean
squares we get the unbiased estimators for Og and Og (for any dis-
tributions of a; and eij):

A2 2

Og = MSE, O3 = (MSA-MSE) /m.

The ICC py for the measurements Xij is defined by 0y= Og/var(xi.),

which becomes now = Og/(cg + Og) and its analysis of variance esti-
mator

A~ _  MSA-MSE

X~ MSA + (m-1)MSE

is obtained by replacing Og and Og by their estimators above.
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If a; and ej4 are normally distributed the confidence inter-
val (pl, Py) for Py can be computed from @F=M37./MSE, which is dis-
tributed as a multiple of an F-distributed variable. The limits

p; and P, work out as follows (see e.g. Searle, 1971):
pk = (¢_Fk)/(¢+(m‘l)Fk)r k=1,2,

where (F2,Fl) is the usual interval of the F(n-1, n(m-1))-distri-
bution for a given confidence probability.

For ICC in other models and the computation of jackknife
confidence interval, see Selkdinaho, 1983. The relative strength
of internal consistency associated with ICC is shown in Table 3.

2. The kappa coefficient for .discrete measurements

If the measurements in Table 1 have nominal or ordinar scale,
we introduce the kappa-coefficient Kp as suggested by Kraemer (1980).
In this case each observation %i 5 is a choice of one category among
K possible categories. To each Xi5 there corresponds a K-dimen-
sional vector of ranks. For example, the usual single choice of
one category Cy imposes a rahk 1.0 on category Cx and a rank (K+2)/2
on the other K-1 categories, hence we get the vector (3.5, 1.0, 3.5,
3.5, 3.5) if we have K=5 categories Cl’ Corenny C5 of which Cy has
been chosen. An equivocal response A/B (equally A or B) imposes
a rank of 1.5 on categories A and B, and (K+3) /2 on the other K-2
response categories. A ranked response AB (A primary) imposes a
rank 1.0 on A, 2.0 on B and (K+3)/3 on the other K-2 categories.
And so on.

Now, the average Spearman rank correlation coeffient r; among
the m(m-1) /2 pairs of observation of subject i (i=1l, ..., n) is
calculated from the rank vectors above. Also the average rp of
1,2, ..., ¥n and the average Spearman rank correlation coefficient
among all possible pairs are calculated. The Ko is defined as
Kg = (rr-rqp)/(l-rqp). If there is no agreement among the instru-
ments, ry=rp and hence K,=0. At the other extreme, Kg=1 if and
only if there is absolute agreement among all observations of
any single person, i.e. ri=1 (and also some heterogeneity between
persons, i.e. rq#l).

How to calculate the correlation coefficients ¥1,rp,...r, and
rp in a handy way, see Kraemer, 1980. In practice, we can usually
assume that rq is fixed, and hence the standard error of Kp is
readily estimated as:
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SE(Kg) = Sr/(W(l'rT) ),

where 82 = zh -rp ) /(n—l) For moderate sample sizes n the
t(n-1) —dlstrlkutlon is sufficiently robust to justify computa-
tion of a confidence interval for the "true" value of Ky, say K,

as
£ g < -1) ¢
KO ta(n 1) SE(KO) K KO + ta(n 1) SE(KO),
where itu(n—l) are the abscissas of the t-distribution curve
(with n-1 degrees of freedom), which cut a total area fraction o
at the tails.

Remark. In the case of single choice of a category it is very
simple to make a program that computes Kg and its confidence
interval, using Table 1 directly. It needs about 70 lines by
Fortran. In other cases, the generation of the rank vectors
is more complicated.

The relative strength of internal agreement associated with
kappa is shown in Table 3.

Table 3. Labels of internal consistency associated
with ICC and kappa
strength of

Icc kappa internal consistency
< 0.50 < 0.00 poor
0.51-0.60 0.00-0.20 slight
0.61-0.70 0.21-0.40 fair
0.71-0.80 0.41-0.60 moderate
0.81-0.90 0.61-0.80 substantial
0.91-1.00 0.81-1.00 almost perfect

As a practical example of the use of ICC and kappa in morpho-
metry we refer to Kosma et al., 1983.
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