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ABSTRACT

A short introduction to the basic mathematical principles
which govern stereology and morphometry is given. The selec-
tion of principles introduced was chosen to cover the needs of
a pathologist active in diagnostic histopathology. For one to
get an overall picture of the fields of morphometry and ste-
reology also and acquaintance with statistics of sampling and
potential computer applications is necessary.

INTRODUCTION

The mathematical backgound to stereology and morphometry
has been studied by numerous authors (Weibel and Elias 1967,
Underwood 1970, Weibel at al. 1972, Underwood et al. 1976,
Chermant 1977, Weibel 1979, Williams 1980, Kalisnik 1981,
although only a few recent ones have had diagnostic histopath-
ology in mind (Collan and Romppanen 1982, Ahearne and Dunnill
1982, Baak and Oort 1983, Collan et al. 1983). At last morpho-
metry is finding its way to where it should have been years
ago — at the root of diagnostic decisions.

In this context one should realize that the elitist
approach to stereology and morphometry, in which formulas
appear more important than working applications, has hindered
the wide acceptance of morphometric principles by diagnostic
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PROC 2ND SYMP MORPHOMETRY . 215

pathologists, who have found such approach redundant, unprac-
tical, wunwise or even wrong. On the other hand mathematics
cannot be avoided in this area even though the principles one
should master are simpler than many of us have dared to think.
In this paper we try to cover the aspects that we consider
should be mastered by pathologists who would like to apply the
principles of morphometry to their diagnostic work. These
principles together with statistics and computer applications
(Selkdinaho 1983, Oja and Collan 1983) underlie diagnostic
morphometry, for example, in the diagnosis of metabolic bone
diseases, borderline malignancy etc.

GEOMETRICAL PROBABILITY

In diagnostic histopathology it is extremely important to
be sure that the lesion to be studied microscopically is
present 1in the section given to the histopathologist. The
histotechnician makes sure that the section includes the tis-
sue. If the lesion in the sample is large the probability that
it is present in the section is also large. If the lesion is
small the probability that it is present in the section is
small. This probability p is dependent on the thickness H of
the lesion in the direction at right angles to the plane of
cutting and the thickness S of the sample in the same direc-
tion (Fig. 1)

, ] )
(1) p=-—- H %

Fig.1
Exercise 1.

A pea has been embedded in a paraffin block. The thick-
ness (s) of the block at right angles to the plane of cutting
is 15 millimeters. The diameter (d) of the pea is 6 mm, which
is also the thickness of the pea perpendicular to the plane of
cutting. A random cut is made through the block. What is the
probability (p) that the pea will be sectioned?

Solution:
H d

p = ——— = ——
S s
6

p=-— = 0.40
15
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216 Y COLLAN ET AL: INTRODUCTION TO STEREOLOGY

So the probability is 0.40, which means that in 40 sections
out of one hundred the pea will be included in the section.

The above applies if the thickness of the section is not
considered. If the thickness of the section t (which is
transparent) 1is included in the calculations the probability
is (Fig. 2)

(2) S p= s

T LESION
S+t SECTION

4‘L Fig. 2

I
+
ladd

Exercise 2.

A skin lesion, 2 mm in diameter, changed its colour from
light - brown to black in two weeks and started to bleed. The
doctor suspected melanoma and excised the lesion. He made the
excision with a 3 cm margin of normal tissue round the lesion.

The sample was fixed in buffered

l/’,r"—_—_—“\\\\ formalin and sent to the pathology

laboratory, where the fixed lesion

///7 \\ was cut in 9 slices of equal
// \\ thickness (Fig. 3) each of which
was embedded in a separate paraf-

fin block so that perpendicular

® cuts could be made. There was

shrinkage of tissue during proces-
sing but as this was uniform

\\ // throughout the sample it will not
be considered here. We assume

\\\ ///' that the diameter of the lesion
‘\\\~\___—’—’//' (H) perpendicular to the plane of
cutting is 3 mm (a little larger

- Fig. 3 than was macroscopically appar-

ent). Sections 5 um thick are cut.
A. In a block chosen at random what is the probability that
the lesion is present in a random section?
B. In a block (f) which contains the whole lesion what is the
probability that the lesion will be present in a random sec-
tion?

Solution:

A. The diameter of the sample was 30 mm + 30 mm + 2 mm = 62 mm.
So p can be calculated: (next page)
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H+t 3 mm + 0.005 mm 3.005
p = = = = 0.048
S+t 62 mm + 0.005 mm 62.005

So about 5 sections out of one hundred will contain the lesion
or parts of it. Section thickness (0.005 mm) obviously does
not markedly influence the result. So section thickness could
be ignored in this example.

B. The thickness of each slice is 62/9 mm.

3x9 27
So p = = = 0.44
62 62

So about 44 sections out of one hundred will contain the
lesion or parts of it. The thickness of sections is again
ignored in this calculation.

The thickness of the sample or part of the sample in the
direction perpendicular to the plane of cutting is called the
caliper diameter and has the symbol H. If we have a sample
which is not spherical and we change its orientation in the
paraffin block the caliper diameter of the sample varies
(Fig. 4).

Fig. 4

In stereological investigations nuclei are often studied
and when these are not spherical and their orientation varies,
then the geometrical probability of finding an individual
nucleus in the section also varies. If the nuclei are of
constant size and shape and their orientation is random there
is a mean caliper diameter (mean of the caliper diameters of
all the nuclei in the sample) = H which can be used to esti-
mate the average probability of finding a nucleus in the
section.

Mean caliper diameters of standard geometrical bodies of
the same size in a population with random orientation can be
determined. In the case of spheres the mean caliper diameter
is the same as the diameter of the spheres and some other
values are as follows (from Underwood 1970):

- Cube 3a/2 a = edge of the cube

- Tetrahedron 0.9123a a = edge of the tetrahedron

— Octahedron 1.175a a = edge of the octahedron

- Pentagonal dodecahedron 2.57a a = edge of the dodechedron
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218 Y COLLAN ET AL: INTRODUCTION TO STEREQLOGY

- Cylinder 1/2 ( r + h) h = height

r = radius of the bottom
- Oblate spheroid (b/a = 1/2) 1.70 a
- Prolate spheroid (b/a = 1/2) 2.76 b

a = longer axis of spheroid
b = shorter axis of spheroid

(Oblate spheroid is formed when an ellipse rotates around its
shorter axis, prolate spheroid when an ellipse rotates around
its longer axis.)

Sometimes we have been surprised to find the lesion
in one section but not in the other sections of the same
sample. The probability p of finding the lesion in one section
if it 1is present in another is dependent not only on the
caliper diameter H, but also on the thickness of sections t,,
t,, and the distance between the sections (s) (Fig. 5). }n
tﬁis situation we can apply the formula (Collan and Collan
1970)

H-s

p:
H+tl+t2+s

Fig. 5 shows how this formula is derived. The distance
over which the cell is found in any one of the sections and
the distance over which it is found in both sections are
determined. The ratio of these distances is the probability in
question.

This formula has been applied in situations din which
successive sections have been studied with different methods
and the findings related to individual cells or cell groups,
for example sections from the same block cut both for electron
microscopy and 1light microscopy, or sections from the same
block stained differently to show that certain proteins are or
are not secreted by the same cells or same group of cells.
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Exercise 3.

Tritiated thymidine was injected into the peritoneal
cavity of a mouse. After an hour the mouse was killed. Samples
were taken from the gut mucosa and prepared for electron
microscopy. One 1.0 pm thick section and 3 ultrathin sections
(0.06 pm thick), were cut from the Epon-embedded tissue. The 1
pm thick section was covered with photographic emulsion which
was exposed for 3 weeks and thereafter developed and fixed.
The tissue was stained with methylene blue and the section and
the autoradiograph above it inspected with a light microscope
(Collan 1973). Many lymphoid cells in the lamina propria had
grains above their nuclei which suggested active DNA synthe-
sis. Sections through the centers of these cells suggested
that the cells were about 8 pm and their nuclei about 5 pm in
diameter. What is the probability that such a cell or its
nucleus would be found in the third ultrathin section cut
after the 1 pm thick section if the cell is found in the
latter?

Solution: The relevant parameters are shown in Fig. 6.

.12 Fm

|\

The probability in case of the whole cell will be:

H-S 8 - 0.12 7.88
p = = = = 0.86
H + 4 o+t 4 S 8+ 1+ 0.06 + 0.12 9.18

So the cell will be present in the third ultrathin section,
after it has been found in the light microscope section, 86
out of one hundred times.

In the case of the nucleus the corresponding probability
is

5-0.12 4.88

= = = 0.79
5+1+0.06 +0.12 6.18

P

In some cases the thickness of the sections turns out to
be very important in morphometric analysis. In such a situa-
tion one should be able to define thickness. This may be
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complicated. It suffices to say here that microtome settings
and scales are not always reliable, and interference colours
of ultrathin sections give a rough estimate. Williams (1980)
discusses instruments which can determine the thickness of
sections reliably. In another paper Williams (1981) covers the
available method for paraffin, semithin and ultrathin sec—
tions.

VOLUME FRACTION

Volume fraction Vy is the ratio of the volume of a
particular tissue component (Vi) and the tissue volume which
contains the tissue component (Vr). Here the concept tissue
component includes numerous particles of identical character
or a large continuous component possibly only partly included
in the volume studied. To cover both of these alternatives we
usually speak of tissue phase. So,

Vi
(4) V= e
Vr

DELESSE PRINCIPLE

Delesse, a French geologist of the 19th century, studied
random sections of rock. He measured the area covered by a
tissue phase on the section and related it to the area of the
section. This ratio is the area fraction A, of the tissue
phase (Fig. 7). It can easily be shown that, if a very large
number of sections are studied, the volume fraction and the
corresponding area fraction are indentical. If fewer sections
are studied the results are estimates of V. How good these
estimates are is determined by statistical sampling theory,
the principles of which can be applied in this context. This
is usually the point at which the probabilistic and statisti-
cal nature of stereology emerges during a morphometric study.

So we can state that, for a very large number of random

sections of tissue,
@ 12 = Ar
ta_...a_= I
\Y A al a2 a6 Al
G |
For small number ‘ Al A
of sections Ar A
A~
A VV
(5) V.= A AREA FRACTION

VoA Fig. 7

and the section(s) can be considered a sample of the tissue in
question.
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and the section(s) can be considered a sample of the tissue in
question.

ESTIMATION OF AREA

Numerous methods can be used to estimate the area of
tissue on the section. Such estimations are necessary for
determining the area fraction 4, .

The microscopic image can %e photographed, enlarged and
printed on photographic paper, or the tissue phase of interest
can be drawn on paper after the image has been projected on
it. The areas can then be determined by planimetry with an
instrument called planimeter or by cutting the tissue out and
weighing it. Also the reference volume should be determined by
planimetry or weighing. Magnetized digitizer tablets can also
be used. Various kinds of grids can be used. For example one
can superimpose a line grid randomly on the photograph or
picture of the image and determine the lengths of the 1lines
covering the tissue phase under study - let the summed length
be Li. When the length of the lines of the grid on the section
is Lr, -

Li 1l+12+...18=Li
LL = _— A —
Lr ‘I‘. 5 x lr =
It has been shown that i i
in area estimation 1 , L, =2
{ 6 1, L Lr
Y —

(6) Ay =2 L \ O 1™

Fig. 8
especially in cases in which the total length of lines cover-
ing the tissue phase is great.
Most often, however, point grids are used. The number of
points falling on the tissue phase in question and the total
number of points studied, Pr, give us the point fraction, Py,

\ LINE FRACTION

. e s e Total number

Pi .
P = o of points on
P Pr the area=Pr
.« Points on tis-
It has been shown . | sue phase = Pi
that _Pi
P Pr
(7) AA o PP s .
: P By

POINT FRACTION
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and this correspondence is true especially in situvations in
which the number of random sections is large and the number of
points falling on the tissue phase under study is large. Again
the probability that this estimate of Aa will be within a
certain confidence interval of the true Aa can be estimated by
applying the principles of sampling theory.

We may also point out that in computerized image analy-
sis, in which each picture is digitized into numerical form,
the estimation of Aa is done efficiently by a computer (Oja
and Collan 1983). '

Exercise 4.

A test grid was randomly laid on a microscopic image. The
grid contained 600 points and covered an area of 122500 um”.
183 points were on cell nuclei, the rest were on cytoplasm or
interstitium. Give a good estimate for the volume fraction of
the nuclei in the tissue studies.

183
Solution: V_® P_ = ———— = 0.305
V.o P 600

A good estimate for the volume fraction is 0.31.
LENGTH DENSITY

Sometimes it would be most interesting to get an idea
about the total 1length of a meandering Ilinear or tubular
structure. For this it is necessary to know the number of
intersections of the structure in the test plane, i.e. the
number of sectioned profiles of the structure per square unit
of section. For this situation we have the equation

(8) LV r 2 x PA

in which L_ is the length of line per unit volume of tissue
V_. . . .

(length density) and PA is the number of intersections per

area of the section.

Exercise 5.

The 1length density of capillaries in a tissue was
studied. Cross sections and oblique sections (2 x thickness <
length < 10 x thickness) were counted as one intersection
each. Tangential sections (length > 10 x thickness) were
counted as two sections. The result was 1600 intersections
per mm~ of section. What was the length density of capillaries
in the tissue?

Solution: We apply the above formula (see next page)
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1600 intersections 3200 intersections
Ly 2x p) = p) =
mm

mm

We replace intersections with mm/mm and get

3200 x mm 3200 mm

mm mm

which shows that the tissue is richly vascularized.

SURFACE DENSITY

Randomly oriented surfaces, when cut in any plane, pro-
duce what looks like lines in the cutting plane. It is surpri-
sing but true that with a line grid one is easily able to
estimate the surface density S (amount of surface per volume
of tissue) of the sample. We do this by counting the intersec-
tions of the test grid lines and the lines produced by the
sectioned surfaces (Fig. 11). Again a simple formula is avail-
able:

k23

(9) S 2x1I

\" L

in which IL is the number of .«
intersections with the surface
profile of test line. 1

Exercise 6. 1—-"/)

Glomeruli  were studied. On a
photomicrograph of a glomerulus,

magnified 100 times, a line grid
was applied. Within the Bowman’s
space the test line length was 89 Fig. 11
centimeters. The intersections of

the test line and the line produced by the sectioned basement
membrane (BM) were counted, the total number being 142. Give a
good estimate of the surface density of the basement membrane
within the Bowman's space.

Solution:

In this example we have added the magnifications to make
the situation realistic. The idea in this approach is to
transfer the data to the level of the sectioned glomerulus.
Because the magnification was 1000, the test line length
corresponds to 89 cm/1000 at the level of the glomerulus. This
is 890 mm/1000 = 0.89 mm. Because there were 142 intersec-
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tions, IL was 142 intersections/0.89 mm. So we can go further:

142 intersections intersections

0.89 mm : mm

. . . 2 2
We replace intersections with mm™/mm”~ and get

2
mm

319 -—3 = 319 mm® BM/mm3 of Bowman's space
mm

The above formula for surface density (S_) is based on
the fact that the length of line produced by the sectioned
surface in the section, is directly related to the surface
density according to the formula

SV ] ZllA/'rr

where 1A = 1is the length of the line per unit test area
(Weibel 71976). This "areal length density" lA, on the other
hand, can be measured by superimposing a line grid on the
photomicrograph according to the formula

" in which L is the total length of the grid line and I is the
" number of times the grid lines cut the profile of the surface.
When the above formulas are combined, we get

4 I xm 21
S 7% —— X = : = ZIL
Vooog 2L L

which is formula (9) above.

NUMERICAL DENSITY

The average number of sectioned profiles of a tissue
component per area of section (N ) is not enough for the
calculation of numerical density (humber of component bodies
in volume, N_). What is also needed is the mean caliper diam-
eter (H). In Yact it is not difficult to show that

(10) N = ———2o
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It would be easy to determine N, if only H could be
easily determined. But there is the problem. Determination of
the mean caliper diameter of tissue bodies 1is problematic
because assumptions on shape and size distribution are neces-
sary. We return to this point below.

If section thickness is also considered in the calcula-
tion the above formula changes to

(11) N, = —=————

where t = thickness of the section
Exercise 7.

Herring eggs, of mean diameter 0.8 mm, were embedded in
paraffin. In a 10 um section there was a mean of 55 eggs per
square centimeter. What is the number of herring eggs in a
cubic centimeter (= 1 milliliter) of the paraffin block?

Solution:
N, =55 eggs/cm2
T = 0.08 cm
t = 0.001 cm
55 eggs 55 x 1000 eggs
N = = -
v e’ (0.08 cm + 0.0001 cm) 81 e’

679 eggs/cm3

If the thickness of the section is not considered the
result is
55 eggs 55 x 10000 3
= = = 688 eggs/cm

cm2 x 0.08 cm 80 cm3

The difference between the results is about 1Z of the
result. Also the ratio t/H is about 17Z. In practice this
difference is negligible. The thickness of the section can be
ignored when the caliper diameter of the component studied is
this much larger than the thickness of the sections.

Ebbeson and Tang (1967) recommended the use of two sec-—
tion thicknesses for this kind of analysis. Under the condi-
tions of such an experiment shape and size assumptions are no
longer necessary, nor do we need to know the caliper diameter.
The only problem in practice is that it is difficult to cut
sections of certain definite thickness and to determine the
thickness of a section (Williams 1980, 1981). The formula
presented by Ebbeson and Tang is: (next page)
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(12) Ny = o

where Npj and Np, are the mean numbers of profiles per area in
the transparent sections and tj and tp; are the respective
thicknesses of the sections. The formula follows directly from
the formula (11) above.

Exercise 8.

Two paraffin sections of the same homogeneous tissue were
cut, one was 5 pm and the other 15 pm thick. Using 1light
microscopy  the number of nuclear profiles per square milli-
meter was,calculated. In the 5 pm section the result was 1650
nuclei/mm- and in the 15 pm section 2500 nuclei/mm”. What is
the number of nuclei per cubic millimeter in the tissue?

Solution:
2 2
2500 nuclei/mm - 1650 nuclei/mm

NV = =
15 pm = 5 pm

850 nuclei x 1000 3
= 85000 nuclei/mm .

2
mm~ x mm x 10

Correction for '"lost caps'. If the objects to be studied

in histological sections stain lightly they can be seen easily
only if they occupy the whole thickness of the section. Usual-
ly these objects are spherical or spheroidal. If the cap of
such an object is in the superficial layers of the section, it
might be impossible to detect the object. If the thinnest caps
are lost from detection estimates of Ny will be too low.
Floderus (1944) worked out a correction formula for this
situation:

(13) Ny = ——————-

where h is the depth of the cap (perpendicular to the plane of
the section) at the limit of detection.

Exercise 9.

Rytomaa (1960) estimated the numbers of eosinophils pre-
sent 1in rat tissues. The study was based on counting the
number of cells per area of section. He estimated that the
mean eosinophil diameter was 10 pm, and that a cap .with a
depth less than 0.5 Fm was not observed. The section thickness
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was 4 um. In 6-month-old rats the mean number of eosinophils
in paraffin sections of the spleen was 2.16 per 0.1 square mm.
What was the number of eosinophils per cubic millimeter?

Solution: Floderus' formula is applied

2.16 2.16 x 1000
Ny = 2 = 2 =
0.1 mm~ (10 + 4 - 2 x 0.5) pm 0.1 mm x 13 mm

2.16 x 100000 3
= 1662 eosinophils/mm

13 mn>

(When the total number of certain cells in an organ or in the
whole body is estimated, also the shrinkage, which is caused
by tissue processing, is taken into consideration. Rytomaa did
this in his study but we do not consider this here.)

If we are ready to make assumptions on the shape and size
of tissue phase particles we call on several formulas. The
first formula is that of Weibel and Gomez (1962). It considers
constant shape particles and is shown below:

(14) N, = -

in which K is_a size distribution coefficient, B is a shape
coefficient, N, is the mean number of profiles per section
area, and P_ is the mean point fraction of the sectioned
profiles. At this level the reader is reminded that the point
fraction is a good estimate of the volume fraction (for fur-
ther details see Weibel and Gomez 1962, Underwood 1970, or
Weibel 1979). This formula is not always simple to apply but
as it has been applied in numerous contexts we give here an
example of how the coefficients can be determined.

Exercise 10.

Romppanen (1981) studied the germinal centers of the
chicken spleen. He wanted to determine the number of the
germinal centers in whole spleens. To do this he first
determined the number of germinal centers per volume of spleen
tissue and applied the formula of Weibel and Gomez (above) for
that purpose. He had to estimate the coefficients B and K. To
estimate the shape coefficient Romppanen assumed that the
germinal centers were prolate ellipsoids (see page 4) with a
constant axial ratio - i.e. that the germinal centers were
ellipsoids of the same shape. He estimated the mean axial
ratio by measuring the mean axial ratio of germinal center
profiles in sections. The mean axial ratio measured from
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sections 1is not the same as the mean axial ratio in 3
dimensions, but was used as an estimate of it. He found the
mean axial ratio to be 0.87 (SD 0.01). Weibel and Gomez (1962,
see also Weibel 1979) have devised graphs with which one now
can estimate B . In this case with the relevant graph B =
1.4. To estimate the size distribution coefficient we need to
have an estimate of the mean size and its standard deviation.
The factor K is the square root of the cubed ratio of the
third moment to the first moment of the distribution:

(15) K = » ——————— ‘

Where D = third moment of the size distribution and D=
first moment of the size distribution. What are these
"moments"  then? Moments are calculated statistics that
characterize the population collected for a statistical study.
Moments are of the form

2 £.x, :fixf ?i fix.3 >, £ox,"
(16) —=———2-2-, , g

n n n n

Where f. is the number of measurements x having the value
X, and n Is the total number of measurements. (2~ fixi)/n
is the first moment of the data, (2:: f.x.” )/n is tﬁe second,
(2:: f.xi3)/n is the third etc. The measurements x can be
chosen in different ways. They can be the absolute value, i.e.
the value of the observations, or difference of any kind -
usually the difference between the mean and the observed
value. If x is defined in the latter way, then the second
moment gives the variance of the data.

In our example we need the moments with =zero as the
reference - i.e. the moments are calculated with x being the
absolute values of the data.

But before being able to calculate K, Romppanen had to
get an estimate of the size distribution. To make this esti-
mate he had to assume that the germinal centers were spheri-
cal. Earlier he assumed (in calculating B ) that they were
ellipsoids, but because easy solutions to size distribution
problems of ellipsoids from two-dimensional sections are not
available, the sphere is a convenient approximation. This was
a good choice because the germinal centers were in fact rough-
ly spherical. He measured the diameters for a number of germi-
nal center profiles (arithmetic mean of the longest semiaxis
and the longest semiaxis perpendicular to the longest semi-
axis), arranged their size distribution within 10 size classes
and then transformed the data to 3-dimensional size distribu-
tion using Wicksell's method (1925). Thereafter K could be
read from a graph published by Weibel and Gomez (1962).
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Weibel (1979) has pointed out that in making estimations
on biological variables K can often be disregarded. If we deal
with objects of about the same size this is true. If we have a
normal distribution of size parameters with a standard devia-
tion of 25 7 of the mean, K = 1.07. In many biological situa-
tions K will be between 1.02 - 1.1, and often arbitrary con-
stants could be used. If the size distribution is wider or if
the experimental situation has changed the size distribution,
the determination of K by experimental means (as suggested
above) may turn out to be necessary.

Also the method of de Hoff (1964) is based on shape
assumptions and deals with constant shape particles:

2
NA Y2
(17) NV = X or
2
21, Yl
21 Y, Y
L
(18) Ny = Ny x X 12
Py Y3

where I. is the mean number of intersections of test lines and
profile boundary per the length of test lines on the image,
and Y, , Y, , Y5 are shape coefficients which are dependent on
the sﬁape of the particles studied. For further details see de
Hoff (1964) or Weibel (1979). Also Aherne (1967) and Loud
(1968) have given methods which can be applied for determining
numerical density.

PARTICLE SIZE DISTRIBUTION

If spheres of varying sizes are sectioned, it is not easy
from the section to get an idea about their size distribution
in three dimensions. One can start by drawing a size distribu-
tion of sectioned spheres in the section, and by estimating
the mean diameter of the sectioned spheres by Fullman's (1953)
formula. In this formula N is the total number of circular
profiles measured, and d, ....... d,. are the diameters of the
profiles. The mean diameter D of the spheres is

m N
(19) D = X

If one needs more detailed information, other approaches
are necessary. In the following we are only treating spheres
and refer to the graphical method by Elias and Hennig (1967)
to show the basic principles. This method is easy to under-
stand, can be easily computerized and has given good results
in practice (Baak et al. 1977).
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The method starts by defining the size distribution of
the circular sections of spheres in the tissue sections. After
measurements we get a histogram of a certain number of size
classes. With the help of the histogram we can draw a smoothed
out size distribution curve. We assume that we get the follow-
ing curve (Fig. 12):
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Fig. 12. The smooth curve presents the size distribution of
circles on a plane which cuts across a population of spheres.
The circles cut from the largest size group of spheres are
shaded. A presents the largest circles of that group. Horizon-
tal lines show the contribution of the spheres from the second
largest size group (5.01 - 5.50 units) above the shaded histo-
gram. The figures refer to the number of circles at the points
marked by vertical dashes on the curve. The figures are the
sums of contributions from the various size groups of spheres.
These figures are also shown by column totals in Table 2.

28




PROC 2ND SYMP MORPHOMETRY 231

Now we decide how many size classes are convenient in the
3-dimensional reconstruction. Let us take 12 size classes of
0.5 units. We also assume that in the size group 5.51 - 6.00
units we deal only with the spheres with the real diameter of
6 units. This means that all circular section profiles in the
same size range are sections of spheres with the diameter of 6
units. Because we know the number of the largest sections now
we can easily estimate how many sections of smaller diameter
groups are also cut across 6 unit diameter spheres in the
sample. Because the spheres have been cut randomly, the laws
of geometrical probability define the numbers of cuts of each
size class. The largest number
of sections will be near 6
units across, thereafter the N
number of sections decreases
as the size decreases. The - C
number of sections in each [/ . B
size class can be graphically . d
estimated as shown in Fig. 13 //1/6//// A
and the numbers entered under | — * . '
the curve into the column of 0; 1 2 3 4 S |6
each size group. This has been | 5.5 units !
done in Fig. 12 for the lar- !
gest two size groups of Fig. 13
spheres.

If graphical reconstruction turns out to be laborious we
can also apply trigonometry. In Fig.l3 A corresponds to a
distance of 3 units times the sine of angle @ . Because we
know cos @ ( lower limit of the size class divided by 2 and 3
= 5.51/(2 x 3) ), we can determine sin ¢ easily, and the frac-
tion of profiles of each size generated through cutting 6 unit
spheres can thereafter be calculated. For the case in Fig. 13
we can first calculate the ratio of 5.51/6 = 0.917 (which is
cos @& ) and use a calculator to find the corresponding angle,
i.e. we determine arc cos @ . The sine of this angle is the
fraction of the radius (3 units) corresponding to the height
A, also easily determined with a calculator or trigonometric
tables. The other fractions (B,C.. in Fig. 13) can be deter-
mined in a similar fashion by first determining the sine
values of the corresponding angles and subtracting from these
the sines of the former size classes. The data can then be
listed as in Table 1, which shows the fractions of sections in
each profile diameter size class after identical spheres have
been cut a random. This table helps us further as will be
shown in the example below. A corresponding table can be
generated for any sizes of spheres by applying the following
computer programme. The programme is written in BASIC for a
Sinclair ZX-81 computer.

———

Program for ZX-81 "Slicing spheres"

10 PRINT "GIVE THE RADIUS OF THE SPHERES"
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20 INPUT A
30 LET E = 0.5

40 LET B = (A - E)/A
50 LET C = ACS B

60 LET D = SIN C

70 PRINT D

80 LET SUM = D

90 LET E = E + 0.5
100 LET B = (A - E)/A

110 LET C = ACS B

120 LET D = SIN C

130 IF (D - SUM)<=0 THEN STOP
140 PRINT D - SUM

150 GOTO 80

In the program, E = size of class interval, B = cos a,
and ACS B = arc cos a.

The next group of sections (5.01 - 5.50 units) is assumed
to consist of sections across spheres of the largest diameter
(6 units) and of spheres across the next smaller size class of
spheres. We assume that in the next size class the spheres are
all of 5.50 units in diameter. We now see that the rest of the
circular sections in the size group of 5.01-5.50 units in Fig.
12 consists only of cuts of spheres of the diameter 5.50
units. Again when we know the number of largest cuts, we

The fractions of sections (circles, 2-dimensional) in 12 diameter size classes after spheres
(3-dimensional) with diameters of 0.5-6.0 units were cut at random. Thickness of sections is
not considered.

Fractions of sections in 12 diameter groups (2-D)

Diam-
eter
of 0.01 0.51 1.01 1.51 2.0 2.51 3.01 3.51 4.0 4,51 5.01 5.51
spheres - - - - - - - - - - - -
(2-0) 0.s0 1.00 1.0 2.00 2.0 3.00 3.50 4.00 4.50 S5.00 5.50 6.00
6.0 0.003 0.011 0.018 0.025 0.034 0.043 0.054 0.067 0.084 0.108 0.153 0.400
5.5 0.004 0.013 0.021 0.031 0.041 0.053 0.067 0.085 0.111 0.158 0.417
5.0 0.005 0.015 0.026 0.037 0.050 0.086 0.086 0.114 0.164 0.436
4.5 0.006 0.019 0.032 0.047 0.064 0.086 0.117 0.170 0.458
4.0 0.008 0.024 0.041 0.061 0.085 0.119 0.177 0.484
3.5 0.070 0.031 0.055 0.083 0.121 0.185 0.515
3.0 0.014 0.043 0.077 0.012 0.183 . 0.553
2.5 0.020 0.063 0.117 0.200 0.600
2.0 0.032 0.102 0.205 0.8681
1.5 0.570 0.197 0.745
1.0 0.134 0.866
0.5 1.000
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can calculate or graphically determine the number of smaller
cuts 1in the same fashion as in Fig. 13. Also the numbers of
these smaller sections have been entered in Fig. 12. By con-
tinuing in this fashion we get an estimate for the three
dimensional size distribution of spheres just by adding up the
sections cut through each size of spheres.

Exercise 11.

In the above example, enter the number of sections of
other size classes of spheres, or calculate their numbers, and
finally determine the size distribution of the spherical
bodies in three dimensions; and the mean and the standard
deviation of that distribution.

Solution:

Enter the size classes as long as there is space under
the curve. After more space is needed you have entered a size
class which does not exist. Stop before that point. Now add up
the sections cut of each size class. The graphical solution
needs quite a long time and a lot of patience.

By applying the data in Table 1 one can also solve this
problem but it is certainly better to draw at least some
figures in order to understand what is going on. In Table 2
the numbers of sections within each size group (2-dimensional)
are underlined. Under them (marked with an asterisk) are the
numbers of sections in each size group after the sections
generated by cuts through larger size spheres have been sub-
tracted. The latter figures give the number of sections
through the center of the size class of spheres in question.
These figures have also been entered in the table columns
(also marked with asterisks). As Fig. 12 and Table 2 show,
there are 100 sections (2-D) in the size class 5.51-6.00.
These are necessarily sections across spheres of 6 units in
diameter. From Table 1 we can pick up the fractions of sec-
tions in other size groups by dividing 100 by 0.400 and multi-
plying it by the fraction of the 2-D-size group. For example,
the number of sections in the 2-D-size group of 3.51-4.00 will
be 0.067 x 100/0.400 = 16.75 » 17,

After the numbers of sections in each 2-D size class have
been entered for 6.0 unit spheres, the 5.5 unit spheres are
considered. Their number in size class 5.01-5.50 is 480-38 =
442, as shown in Table 2. The corresponding numbers in other
size classes are entered thereafter; again using the data of
Table 1 in the calculations. Because biological objects usual-
ly have a size limit below which there are no objects, figures
are entered until the number of sections in the column exceeds
the number of sections in the size group. The last sphere size
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TABLE 2

List of numbers of sections in various size groups from spheres of various sizes. The list
corresponds to the presented example and the numbers of sections (2-D) are those shown in the
distribution of Fig. 8. The negative number in the column head of the size group 0.51-1.00
shows that spheres smaller than 1.5 units in diameter camnot be present.

Diameter groups of sections (2-D), number of sections in each diameter
group (underlined) and the number of sections in diameter groups after
the number of sections from the larger diameter spheres has been ex-
cluded (asterisk).

0.01 0.51 1.01 1.51 2,01 2.51 3.01 3.51 4.01 4.51 5.01 5.51

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00

Diameter ~ 45 140 280 435 625 835 1010 1040 970 770 480 100

of 7 18 7% 41% 124% 268% 451% 554% B14% S76% 442% 100%

spheres
(3-0) Number of section profiles in each diameter class Totals
6.0 1 3 5 6 9 11 14 17 21 27 38  100% 252
5.5 4 14 22 33 43 56 ol 90 118 167 442% 1060
5.0 7 20 34 49 66 87 114 151 217  576% 1321
4.5 8 25 43 63 86 115 157 228 B614* 1339
4.0 9 27 47 70 97 136 203  554%* 1143
3.5 9 27 48 73 106 162 451% 876
3.0 7 21 37 59 94  268* 486
2.5 4 13 24 41 124% 206
2.0 2 6 13 41% 62
1.5 1 2 7 10
1.0
0.5

Totals 52 158 280 435 625 835 1010 1040 970 770 480 100 6755

whose figure has been entered is 1.5 units. But note that
numbers of smaller sections reach higher values than could be
expected - such error is very typical of this kind of analysis
and is due to the shape of the distribution of 2-D section
sizes. In this example the differences are not big in relation
to the number of sections studied and this is why we can be
satisfied with the size distribution shown in the right hand
column of Table 2. From this data the mean and the standard
deviation can be calculated.
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The mean (X) is:

%X = (6 x 252) + (5.5 x 1060) + (5.0 x 1321) + (4.5 x 1339) +
(4.0 x 1143) + (3.5 x 876) + (3.0 x 486) + (2.5 x 206 +
(2.0 x 62) + (1.5 x 10) divided by 6755.

This gives X = 4.40 units.

The standard deviation is

v e— - )
SD I;’ ZNl (Xl - X)

f Z i ’
where N

; is the number of spheres in size class i and N; is

the total number of spheres sectioned. xj is sphere size in
size class i ‘and X is the mean size of sectioned spheres. In

other words (and figures) SD =

(6-4.4) 252 + (5.5-4.4) 1060 + (5.0-4.4) 1321 + ......
+ (1.5-4.4) 10,divided by 6755 and a square root taken of
the result.

This gives 0.90 units.

There are also other methods of determining the size
distributions of spheres. Several of these have been handled
in detail in the books of Weibel (1979), Underwood (1980),
Williams (1980) and Aherne & Dunnill (1982). The size distri-
bution problem has been examined by Wicksell (1925, 1926),
Schwarz (1934), Lenz (1954, 1956), Saltykov (1958), DeHoff
(1962, 1965), Bach (1963, 1967) and Giger and Riedwyl (1970).

HOLMES EFFECT

This effect may affect the estimation of many
stereological parameters. The Holmes effect is the change in
the appearance of the image that is produced by finite section
thickness as opposed to a "perfect" cut (section with no
thickness). If we define the Holmes effect like this the
effect will affect the results of Ny, A, Vy, and Sy and
almost any other morphometric estimation.

Section thickness affects the results if sections are
transparent and if there is enough contrast for a detail
completely embedded inside the sample to show through the
section. If the sections are transparent and the contrast is
perfect this effect will play a part when the objects studied
are not very large with respect to the thickness of the
section. In Vg measurements the error caused by the Holmes
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effect can be estimated with special formulas (Holmes 1921,
Hennig 1967). The error exceeds 12 % of the result when the

diameter of the object is less than 15 times the section
thickness. If the diameter is less than 8 times the section
thickness, then the error will exceed 20 %. Because perfect
contrast is seldom attained one should be careful in applying
these principles. Under 1less favorable conditions other
sources of error may be important (see correction for "lost
caps" on p. 7).

OTHER METHODS

Numerous other methods have been put forward in articles
published in the field of stereology and morphometry and all
of them cannot be covered in a single presentation. We there-
fore refer the reader to the more voluminous presentations of
mathematical stereology already cited in the introduction.
From the diagnostic point of view at least, parameters as 'the
nearest neighbour distance" and '"connectivity" (Takahashi
1982) have potentially interesting applications.
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