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ABSTRACT

Before any measurements can be carried out in an image,
it must first be clarified how such dimensions are brought
about. It is explained that dimensions most likely to be used
such as areas, perimeters and Euler numbers, must be defined
in such a way that no ¢onflicts in logic can arise. This paper
explains basic considerations which have to be made prior to
any measurement and the consequences of tessellating the
Fuclidean plane.

0. INTRODUCTION

All the theories and formulae in stereology are based on
the Euclidean metric. If we analyse images using computers we
have to discretize the plane of the image. In this tessellated
plane the Euclidean metric is no longer valid. So we have to
analyse the consequences of tessellating the plane for
measurements with computers and to find possibilities of
using all the formulae developed for the Euclidean plane as
an approximation. This paper aims at explaining how measured
values can be obtained in a tessellated plane such that no
conflict in logic can arise. It . is not intended to present
a complete review of'the_liter&ture and of the state of the ,
art in this field. The idea'is rather to give an introduction
to those readers not familiat with the problems in' question.

1. MEASURING GRID

When processing images we will limit ourselves initially
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to images situated in one plane. This plane represents a con-
tinuous two - dimensional space in which Euclidean metrics
applies (R2). The images are digitized by superimposing a
measuring grid and determining the brightness (the functional
value) of the image at the different grid points. In physical
terms, the digitized value now represents the average of the
brightness distribution around such a grid point. The grids
normally used are regular subdivisions of the plane by means
of polygons. If it is to be assured that each point in the
plane is considered precisely once, the environments around
the different grid points must be chosen so as to result in
complete tessellation of the plane. The transition from an
image in the object space to an image stored in the computer
is a transformation from a Euclidean space into a discrete
space.

If the plane is to be tessellated completely with regular
polygons of n sides, the number of polygons of n sides meet-
ing at each corner will be (Coxeter, 1963)

m = (1)

In the centers of these polygons with n sides (unit cells)
are the grid points to which the readings are assigned. If
these unit cells constitute polygons with n sides, the grid
points are arranged in the form of regular polygons of m
sides. It is easy to see that only the three following inte-
ger relationships between m and n exist for Equation (1):

m |3 4 6

n ‘ 6 4 3
Coxeter (1963) has shown this to be the only possibility of
tessellating the plane with regular polygons of n sides.

These measuring grids will be briefly explained below.
Figs. la, b, c shown the grids.

The simplest measuring grid is the Cartesian grid,
m=4, n =4 (Fig. la). In this case, all grid points are
points of 7Z2. The functional value to be assigned to a grid
point represents the mean of the functional values within
a unit cell which, in this case, is square. In a similar
way, a hexagonal grid (m = 6, n = 3) (Fig. 1b) can be de-
fined, in which each functional value to be assigned to
each individual grid point is the mean of the hexagon
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Fig. la: Arrays of unit cells
and grid points in a Cartesian
system of coordinates.

GRID POINT Fig- 1b: Arrays of unit cells

and grid points in a system
of hexagonal coordinates.

UNIT CELL

Fig. lc: Arrays of unit cells
and grid points in a system
of triangular coordinates.

Fig. lc:

surrounding that grid point. The grid points proper are
arranged as equilateral triangles. Finally, there is tessel-
lating of the plane with triangles (m = 3, n = 6), the
triangular grid (Fig. lc). In this grid, the functional
value to be assigned to a grid point is the mean within the
triangle surrounding the grid point. However, this grid is
not used for practical purposes (Gray, 1971; Peipmann, 1976).

2. CONNECTIVITIES OF ADJACENT POINTS

Let us consider two points, p; (xj, yi) and pi (X3, ¥3),

. 12 7]
and the sets P; = {pj} and Pj = {p:}, containing these points.
In this way, we can define a neighborhood around a point by
defining the connectivity of two points by means of a small
set, S, describing the neighborhood of the origin. Two points,
p; and Py, are adjacent, if

P, N (Pj ®S) + 0 .A. P, N (B, @ 5) tp it (2a)

For
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PN (Pj ®S) =¢ .v. Pj n(,es) =4¢ i4 ] (2b)

® stands for the Minkowski addition
(dilation) (Hadwiger 1950, Matheron 1967)

the points, pj and p;, are not adjacent. In the Euclidean
plane, two points arée called adjacent, if

P €U (pj)
_J 2 }
U () = VPi €R7[d (p,, P < e (3)

where d (p., p.) is the Euclidean distance between the points
p; and p',landJe is correspondingly small. This definition is
a speciai case of definition (2) for a circular set, S.
Definition (2) has the advantage over (3) of being restricted
neither to Euclidean space, nor to an isotropic neighborhood.
In a discrete space, each point has only a finite number of
neighbors (connectivities). In principle, there may be
freedom in choosing these connectivities, but any choice of
connectivities has far reaching impacts on the representa-
tion and the measurement of shapes in a geometry defined in

this way.

In the case of a discrete space, the set S, describing
the neighborhood of a point consists of the origin and the
points meant to be adjacent to it. To be meaningful, it must
contain at least one additional grid point besides the origin.

2.1 CARTESIAN COORDINATES

Fig. 2 shows the eight possible neighbors of an image
point with the coordinates (i, j). Obviously, the four
immediately adjacent unit cells with the coordinates
(i, 3-1), (i, j+1), (i -1, j) and (i + 1, j) must be
regarded as neighbors. However, in this case of application
these four neighborhoods are not enough. If we consider the
image of a straight line in Euclidean space in the existing
discrete space we see that, for such a straight line, there
exist only two directions located normal to each other in
which a straight line is also represented as a ''straight
line." In all directions not parallel to the coordinate
axes, a straight line imaged in discrete space breaks down
into "line segments' or points.
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If also the diagonal unit cells
R A with the coordinates (i - 1,

1| g1 ] e 3=, GE-1, 3+, (14
i-1

T e 1, 3=-1)and (1 +1, 3+ 1)
il are regarded as being adjacent,
10 [t each straight line in the

o1 Ljer e Euclidean plane will also be

imaged on a closed traverse
line. In discrete space, a

Fig. 2: Counting unit cells traverse line is supposed to
in a system of Cartesian be an ordered set of points in
coordinates. which each point, pj, has not

more than two neighbors, pj-1 and Pj+l> which are adjacent to
the point, p:, for the definition selected for connectivity.
If each poin% has precisely two neighbors, it is a closed
traverse line. The assumption of eight possible neighbors
(connectivities) in the Cartesian system is the assumption
used most frequently (Rosenfeld, 1966, 1970). Below, only

the case involving eight connectivities of a point will be
considered. The set, S, describing the neighborhood of the
origin therefore consists of the origin and the eight points
surrounding it.

Fig. 3: Curve in a system of Cartesian coordinates
producing connected and unconnected sets.

Inclusion of the unit cells connected by way of the diagonals
results in the interesting paradox which makes it possible to
have a closed traverse line not producing two disjunct sets.
Fig. 3a, b show the contours of two squares. While, in the
square shown in Fig. 3a, the inside and the outside are dis-
junct and not connected, this is not true of the square in Fig.
3b, which is shown turned around by 45 degrees. In the square
shown in Fig. 3b, only the connectivities trough the directions
of the diagonals were used. If a connection between the unit
cells (i, j) and (i + 1, j + 1) is assumed (covered points),

it is obvious that also the unit cells (1 + 1, j) and
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(1, j + 1) are connected, Hence, that area of the plane,
which is surrounded by the square standing on its tip in

Fig. 3b, is not separated from the remainder of the plane.
Unlike Fig. 3a, the closed curve shown in Fig. 3b is not a
Jordan—type curve. Rosenfeld (1966, 1970) has drawn attention
to this paradox.

The Japanese game of GO makes use of the very fact that
in a discrete Cartesian system a closed curve 1s not in
every case also a Jordan-type curve.

2.2  HEXAGONAL COORDINATES

Fig. 4 shows the unit cells in a hexagonal grid. It is
clearly seen that there is only one type of neighboring
elements. There are no unit cells meeting only in one point.
Consequently, connectivities cannot intersect. For this
reason, every closed curve in this hexagonal system is also
a Jordan—-type curve.

2.3 PARTICLE CONNECTIVITY

Some properties of binary images will be examined below.
Let an image be the subset

B (x, y) < R2 or, in case of_a
discrete space, B (m, n) < 2%,
in which N particles are con-
tained which can be individ-
ualized. The set, B (x, y),
can be broken down into N
paired disjunct nonempty
subsets (particles), G; (%, y),
(in case of a discrete space,

Gi (m, 1’1)).

B= U G, I=4{1,2...N}
Fig. 4: Counting unit cells in ier *t
a system of hexagonal coordi-
nates. G.NG,. =0 i+ j

i 7]
On the basis of definition (2), let two subsets, G; and Gj
(1 + j), be disjunct and not connected, if
Gi n (Gj ®S) =0 .A. Gj n (Gi ®S) =¢ 4)

As in 2. s S defines the neighborhood of a point. In addition,
we can also indicate a boundary Ci (Gi)’ for each particle.
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If (4) is met, we will construct a boundary C (G.), for
which it holds that t

¢, (6 N Cj (Gj) =0 (5)

because the subsets are not connected. Condition (5) is met,
if

c, (Gi) c (Gi ® S) (6)

Hence, for reasons of better clarity, the subsets G;, are
frequently regarded as belng closed i.e., Cj = G; (Peipmann,
1976). We will have to examine whether this assumptlon meets
all criteria.

If we consider two sets located at the smallest poss-
ible distance from each other, it holds that

(6, ®5) N (Gj ®S) + 0 (7)

We will now find the largest set, S' < S, which, in this
case, meets the condition of

(G, ®8") N (G. ®S') =¢ (8)

Condition (8) can only be met for a pair of sets, Gi
and G:, if S' N S' = {0}, where S' is produced by mlrrorlng
S' from the origin. The set {0} contains only the origin. In
order to prove that this condition is not sufficient, let us
look at the example of a dilation of two parallel straight

- - - -
lines, g, which are parallel to e; at the distance of two
image points:

—>_—>+>\—>
S |

- - -
g8, = a; + 2 e, + A e

5 These straight lings are dllated _by means of vectors,
n; = o el + ay ey and n2 = B el + By ey oy, By € {-1,0,1}
from the set of local vectors describing the p01nts of S

The stralght lines gl , produced by dilation (border line
of gl ® 0. ) are

—>_->+>\—>+ —>+ -
| G T S TS
_>_—>+>\_>+2—)+B->+Bg
& = & | €2 1 & 2 %
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These two new straight lines coincide if and only if

az =2 + 82

Because of the range of values of oi and B;» this condition

is met whenever ajp = -B7. An essentially equlvalent result
is obtained by turning the straight lines around.

This means that we obtain for §'

s'= U p; (a, b) I={1,2..... 8} 9
i€l

where p; are the local vectors describing the neighboring
points of the origin.

For the coefficients, a; and bi’ it then holds that
[Vi:ai € {0, 1}] v [Vl a, € {-1, O}]

ied{1,...,8}
[Vi:bj € {o, 1}] v [Vi:bj € {-1, 0}]

V stands for the exclusive or connection.
Since (5) applies at the same time, it holds that
G. ®S'cG. UC. (C.)
i -1 i i

Coefficients of measure must be found to characterize images
in quantltatlve terms (such as samples of materials). When
surveying images B it is generally necessary to decompose
into M subfields, B;, the field, F, to be surveyed of the
image, B. For this to be permissible, only those measures

u (Bl) may be determined for which

} w (@) =u( U B L={1,2, ... m}
1€L 1€L

This applies correspondingly also to all Gi

) v (G) =u (U G, D> I=1{1,2,...N)} (10)
1€T t i€I
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This means that we only consider those measures, u, which
are o-additive. Gray (1971) has shown this to be true for
the areas, the perimeter and the Fuler number. This is also
evident in the light of conditions (4) and (5). While the
areas and the perimeter are positive and monotcnic measures
to which

H (Gl) >0, u (Bl) >0

and u (Gi) <u (Bl) for Gi c B1

and i (Bl) < u (B) for B1 cB
respectively, apply, this is generally not true of the
Euler number. ’

Because of the additivity of the three measures con-
sidered above, it holds for our image, B, that

p @ =u(U G)= Y w(,)I=A{1,2,..N} (11)
ier t i€1 *

Under conditions (4) and (5) it is irrelevant whether the
individual particles (= subsets) of an image are individual-
ized or not before determining the coefficient of measure.

3. MEASURES AND METRICS
3.1 DEFINITIONS OF AREAS AND PERIMETERS

Only the areas of particles and their perimeters are to
be studied as measures below, because only they are bound
to metrics. This requires the following definitions to be
agreed upon:
In a system of particles U Gi =B c R2
i€l

the following relations apply between the definitions of the
connectivity of subsets Gi (Eq. 4), the rule defined therein
for a boundary, Cj, (Eq. 5) and the measures for the area,
A, and the perimeter, P, of these subsets:

§ ds =P ) (12)

C.
1
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§ xy' -yx'")ds =A (13)

C.
1

1
2

The integration path, C represents a boundary of Gi accord-
ing to Eq. (5).

As performed in R2 in this case, a system supposed to be
consistent in a discrete space must obey the criterion of
allowing a contour to be defined through the definition of
neighborhoods (connectivities) in such a way that this con-
tour can be used as an integration path to measure the area
and the perimeter, taking into account a metric adequate to
the grid. With the metrics of discrete space taken into
account, the elementary geometric relationships must apply
between the perimeter and the area.

If one changes to a discrete space, one considers the
quantity, B (m, n), containing the particles, Gi (m, n),

G. ©B
1

The particle, Gi’ by definition has the area of

A (G)) = N I, (mmn) mn€d{l,2.. N (14)
m,n i

I (m, n) being the indicator function of G, . This formula
imﬁlies that the number of discrete points making up G; is
taken as an area. Moreover, we want to consider boundaries,
Ci (Gi), meeting criteria (5) and (6). A boundary, C;, repre-
sents a closed line. If a parameter descrlptlon Ci =¢C; (1)
1 €11, ... L;j}, is chosen for C; (m, n), Lj is the length
of the traverse 11ne (= number of grid points making up C. i) -
Writing down formulae (12) and (13) for a discrete space by

analogy provides
M, = ) I. (1) L={l,2....M} (15)

Lo Y4

=
[}

) {m(l)-[n(1+1)—n(1)]-n(1)[m(1+l)—m(1)]} (16)
1€L

If the result, Nj, is in accordance with the area defined in
Eq. (14) and if conditions (5) and (6) for a boundary have

been met in setting up Ci’ the result, Mi’ is the perimeter
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of G;. Of course, this implies that the boundary, C;, has
been chosen so as to meet the conectivity conditions of the
underlying space. This also applies to the interpretation
of the coefficient of measure of the perimeter.

In all systems meeting criteria (4, 5, 6, 14, 15) and
(16) it is irrelevant whether the measurements are carried
out by counting points (if necessary, after the appropriate
transformations) or by tracing contours. The criterion of
the measurements of the area and the perimeter being con-
ducted on a uniform basis also in Z“ becomes more important,
especially, when the area and the perimeter are measured in
a sample and conclusions with respect to possible shapes
are drawn from their relationship.

. 2 2 .
For length measurements in R” and Z” we use the Min-
kowski measure for the distance between points 1 and p.:

n|l/n (17)

- - n _
where, in R2, n = 2 (Euclidean distance) and, in discrete
Cartesian space, Z2, n = 1 (taxi metrics) is used.

In case of hexagonal tessellation of the plane, the
hexagonal distance function indicated by Rosenfeld, Pfaltz
(1968) must be applied:

(
d Lpi (Xi’ yi), P, (xj, yj)] =

= Max [lxi—le’; llx -X. |+(x -X. )] [[Ei
' (
l

%. |X1—XJ|—(X -X, )] l

N .'><
v—- r———
NI M lvl ™

[Py (S—py
| I
————
+
%
[
|
«

X5 Vs €z

[XiJ is the largest integer not exceeding X o As has been
shown by Rosenfeld and Pfaltz, this distance function meets
all criteria of a metric in a hexagonally tesselated plane.

3.2 PERFORMING MEASUREMENTS IN CARTESTAN COORDINATES

According to the definition of the neighborhood of a
point indicated in 2. the quantity S describing the
neighborhood of a point has the appearance shown in Fig. 5.
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Fig. 5: Set S describing the
neighborhood of a point in
the system of Cartesian
coordinates.

are shifted in such a way that
a grid point, this contour can
grid points. Consequently, the
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Fig. 6 shows a set, Py, and
its neighborhood Py & S, and
three additional disjunct sets
located at the shortest poss-
ible distance from P;. Now a
contour, C, can be defined,
which meets criterion (5) and
in which the result obtained
from (16) is equal to the area
to be determined by counting.
This contour is obtained by
assigning an area of 1 to each
unit cell in accordance with
(14) and tracing the outer
boundary of the unit cells of
a figure. If the unit cells
one corner point each lies on
be described by a sequence of
contour, C, is determined by

C=@®®s"YN@G®es"

The set, S', has been plotted in Fig. 7. Besides the set,
S', indicated, the sets originating from turning S' around the
origin in 90° steps furnish contours with the same properties,
because all four corners of the unit cell can be moved into
the grid point. Obviously, the contour forming set, S', must
be a subset of the set, S, defining the neighborhood, because
otherwise criterion (5) cannot be met.

The perimeter measurable in accordance with (12) indicates
the perimeter in taxi metrics, for also in calculating the
area, the integration path, C, must be covered in the sense of
taxi metrics. Since S' N S' = {0} and also criterion (9) is met,
also criterion (5) will be met in every case. From the de-
finition (19) of the boundary it is apparent that the subsets,
Gi’ must not be regarded as closed.

Fig. 8 shows the same arrangement of sets as Fig. 6, but the
sets Pl,....P4 are also shown with their contours C .C

p2reeeCy

As can be seen from Fig. 8, the contour determined in
accordance with Eq. (19) is a Jordan-type curve. It is also
interesting to point out that S' & S' = S.
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Fig. 6: Neighborhood of the set, P

]
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Fig. 7: Set S' to construct the discrete system of
Cartesian coordinates.
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Fig. 8: Sets P],...P4 and their contours, Cl,....C4.

3.3 PERFORMING MEASUREMENTS IN HEXAGONAL COORDINATES

The set, S, describing the neighborhood of a point in
hexagonal coordinates has the appearance shown in Fig. 9.
We can assume that the hexagonal coordinate system was brought
about by shearing the system of Cartesian coordinates by 30°.
In this case, the Cartesian unit cell, the square, is changed
into a rhombus with 60° and 120° angles, respectively. If we
shift the unit cells in such a way that one corner each is
superimposed upon a grid point, we obtain a contour meeting
criteria (14) and (15). However, this violates the neigh-
borhood conditions, because a contour constructed in this
way uses points which are not directly adjacent, i.e., which
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Fig. 9: Set S describing
the neighborhood of a point
in system of hexagonal
coordinates.

is used, besides the origin,
duced.

Let us consider the set,
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are not elements of S, This de-
sign of the contour resulting
from the distortion of the
Cartesian grid consequently
cannot be used.

There are only two dif-
ferent possibilities of con-
structing a contour forming
set, S', meeting criterion (9).
Besides the origin, these two
sets consist either of omne
point or of two points of §
side by side. (One top of this,
there are the six sets pro-
duced by rotation of S' around
the origin). However, it is
obvious that the set S' must
consist of three points, be-
cause if only one point of S
no closed contour be pro-

S', drawn in Fig. 10, which

consists of two points besides the origin. As in the case

Y A\ \VE

\/\/\/\ o POINT OF SET §
®..ORIGIN

. ..GRID POINTS

A AKX
Fig. 10: Set S' to construct
the perimeter in a system

of hexagonal coordinates.

contours whose intersections

of the system of Cartesian
coordinates, also in the hexa-
gonal case it holds that

S' ®S'=s, if S' is a contour
forming set in accordance with
(19). If we use the set, S',
shown in Fig. 10 to construct
a contour in accordance with
Eq. (19), we find in calcu-
lating the area in accordance
with (14) and (16) respect-
ively, that the area calcu-
lated in accordance with (16)
is always smaller than would
correspond to the number of
unit cells (Eq. 14). However,
since a set consisting of more
than three points leads to

do not disappear in accordance

with (5), there is no possibility in the hexagonal system
to meet all criteria outlined in Section 3.4.1.
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4. DETERMINING PERIMETERS APPROXIMATING R2 MEASURES
4.1 CARTESTAN COORDINATES

The dimensions determined- by the methods described
above are exact quantities. However, in view of the
fact that the measurements are carried out in a discrete
grid, one obtains the perimeter in the metrics used in Z2.
When further processing the measured results, however, one
mostly uses theories and formulae derived for R2. Conse-
quently, additional coefficients of measure must be deter-
mined which approximate the coefficients of measure in RZ2.
In all approximations one values the connection between two
boundary points of the length 1, if it runs parallel to one
of the two axes, and with the length V2' in those cases in
which two adjacent points are connected with each other at
the corners. The quality of such approximation for a
Euclidean space can be gaged from the quality of the fit of
the perimeter of a simple shape to the area described by
(14). Measuring, e.g., the area A of a square, one expects
a perimeter P = 4 VA. If the perimeter determined by approxi-
mation is P', the quality of the approximation can be
described by the relative deviation, A:

P' - P
A= P
The smaller [A], the better the approximation is supposed
to be. Gray (1971) offers an interesting solution to this
problem of approximation in which four adjacent unit cells
(so-called bit quads) are considered. Depending on the num~
ber of points of the set to be measured they contain, these
bit quads are weighted differently. In the process accord-
ing to Gray it is necessary to weight differently the points
also when measuring an area, depending on the structure of
the bit quad containing the point considered. Area measure-
ments according to Eq. (14) are no longer possible in that
case. Another drawback of this method lies in the rela-
tively large amount of computer time required to perform
such measurements by means of a computer working in the
sequential mode. Empirical procedures have shown that good
approximations to the perimeter can be obtained by using
the following term:

P, = g I, (i) + (2 -1) g L (1) (21)

with the following abbreviations:
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The set, S", consists of the origin and the points (1,0)

K'

K

)
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(Kes) U (K®es,)

(Bo®s")yn (Bes"

stands for the Minkowski subtraction.
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and (0,1) or, correspondingly , of the points obtained when

turning S" by 90° each. The sets, S

origin and the points (1,1) and (1,-1), respectively.

Table 2:

parallel squares of different sizes

Measured perimeter and area values of axially

N 1 2 3 4 5 10

1 9 16 25 100
PE 4 8 12 16 20 40
P 4 12 16 20 40

o

PI 1 4 8 12 16 36
AI -0.75 -0.5 -0.33 }-0.25 -0.2 =0.1
AG 0.5 2.5 6.5 12.5 20.5 90.5
PEG 2.83 6.32 }10.2 14.14 18.11 38.04
PG 2.83 6.83 10.83 14.83 18.83 | 38.83
AG 0 -0.08 | -0.06 -0.05 -0.04 | -0.02
PA 3.41 7.41 11.41 15.41 19.41 39.41
AA -0.15 -0.07 -0.05 -0.04 | -0.03 | =0.01

Tables 2 and 3 shown the areas and the perimeters for

and Sy, consist of the

squares of different sizes, inclined once parallel to the
grid and once 45° relative to the grid, as determined by the
different methods. To asses the quality of the approxima-
tion, the deviation defined in (20) was used. In these
tables the following quantities are indicated for squares

of different lengths of the edges, N:
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-~ the area, A, according to (14);

- the perimeter, P_, according to (15) (taxi
driver metric);

- the "true" perimeter, Py = 4 VA

- the "inner" perimeter, P;, which is all points
of the square having at least one neighboring
point in the direction of one axis of the
coordinates outside the square (Peipmann, 1976);

- the area, Ag, and the perimeter, Pg, according
to Gray, 1971 and the '"true'" perimeter, PEG’
pertaining to the area, Ag;

- the approximate value defined according to (21)
of the perimeter, PA'

Table 3: Measured perimeter and area values of squares of
different sizes inclined by 45° relative to the
coordinate axes

N 1 2 3 4 5 10

1 5 13 25 41 181
PE 8.94 14.42 20 25.61 53.81
Pu 4 12 20 28 36 76
PI 1 4 8 12 16 36
A -0.75 | -0.55 |-0.45 |-0.40 | -0.38 -0.33
AG 0.5 4.5 12.5 24.5 | 40.5 180.5
PEG 2.83 8.49 14.14 19.8 25.46 53.74
PG 2.83 8.49 14.14 19.8 25.46 53.74
AG () 0] 0] 0 0 0]
PA 3.41 9.07 14.73 }20.38 | 26.04 53.33
AA -0.15 ] -0.01 0.02 0.02 0.02 0.01
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Let us first of all consider the values shown in Table 1

for the perimeter of axially parallel squares and their de-
viations from the Euclidean '"true" perimeter; in this case,
the approximate values calculated in accordance with Eq. (21)
shown the most favorable result. In the squares turned 459,
conditions look slightly different. In the shapes one ob-
tains an error of zero when using Gray's formulae, while the
use of (21) produces errors in the range between one and two
percent. It is seen that the relatively sophisticated way

in which Gray measures the area produces only slight advan-
tages for the two shapes considered. The disadvantage of
greater computing expenditure probably weighs more heavily.
The "inner" perimeter in all cases deviates very much from
the true perimeter. For large values of N, all approximated
values for the perimeter converge towards the true perimeter,
thus rendering these considerations invalid for sufficiently
large squares. In general, however, it is not the areas and
perimeters of squares which must be determined, but those

of random shapes. Such shapes in principle can be described
by a series of small squares of the two types described
above. Consequently, it is important also when dealing with
small basic patterns to obtain the best possible approxima-
tions to the perimeter.

Exact results can be expected only in the absence of
the approximations to the Euclidean space and if the
measured values are determined and processed under the con-
ditions of taxi metrics in Z°.

4.2  HEXAGONAL COORDINATES

Unlike Cartesian coordinates, in hexagonal coordinates,
the distance between two adjacent points is always unity.
This facilitates determining coefficients of measure for the
perimeter, which are approximated to the values of RZ.

Gray (1971) indicates a formula for the perimeter based on
counting the six possible groups of two unit cells, each
containing the values O and 1. The area used by Gray in this
case is the number of points. Another approximation is ob-
tained by determining the perimeter analogously to the Car-
tesian system (Eq. 21). In the present hexagonal system,
this leads to the formula

P, = % I, (22)

with the abbreviation
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Table 4: Areas and perimeters of hexagons of various

sizes determined by different methods

IMAGES

N 1 2 3 4 5 10

A 1 7 19 37 61 271
A 0.5 | 6.5 18.5 36.5 | 60.5 270.5
Py 3.46 | 9.17 15.1 21.07] 27.6 53.03
P 1 6 12 18 24 54
A, |=0.71 |-0.35 -0.21| =-0.15 |-0.11 -0.05
P, 3.46 |10.04 17.3 24.2 | 31.2 65.8
A 0 0.1 0.01 0.01 | 0.01 0.02
P, 3 ,9 15 12 27 57
A, |-0.13 |-0.02 | -0.01| -0.003|-0.002 | -0.001

The set, S" < S, consists of ‘the origin and two adjacent
points side by side. To shown the quality of these approxi-
mations, the values measured for the perimeter by the differ-
ent techniques are summarized in Tables 4 and 5 for hexa-
gons and triangles, respectively, of different sizes and the
deviations defined according to (20) are entered. The follow-
ing quantities are shown in Tables 4 and 5:

—- the lengths of the edges of the hexagon and the
triangle, respectively;

- the area, A, of the shapes, which is obtained by

counting the unit cells occupied (Eq. 14);

- the area, Ay, according to Eq. 16. This quantity
was entered in order to indicate errors between

an area measurement by counting points and by

planimetry in a hexagonal system of coordinates;
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- the "true" perimeter, Py, of the shapes in Rz;

- the

inner perimeter, P:, which is the number

1

of points of the shapes having at least one
neighbor outside the shape;

- the perimeter, Pg, according to Gray (1971);

- the approximate value defined according to

(22) of the perimeter, P

A’ in Rz.

Table 5: Areas and perimeters of equilateral triangles of
different sizes determined by different techniques

N 2 3 4 5 10
A 3 6 10 15 55
A 2 4,5 8 12.5 50
Py 7.35 10.39 13.42 16.43 31.46
P 3 6 9 12 27
A -0.59 -0.42 -0.33 -0.27 -0.14
P, 6.9 10.4 13.9 17.3 34.6
AG -0.1 0.001 0.04 0.05 0.14
P, 6 9 12 15 30
AA -0.18 -0.13 -0.12 -0.09 -0.05

As in the case of Cartesian coordinates, also in the hexa-
gonal system the difference between the "true" perimeter
and the different approximations converges towards zero as

the shapes increase in size.

As in the case of Cartesian coordinates, the deviation
is a maximum for the inner perimeter. Clearly the smallest
deviations are shown by the approximate value of the per-

imeter defined according to Eq.

(22).

Although, in hexagonal coordinates, there is mo ident-
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ity between the area as determined by counting points and
that determined by tracing contours (planimetrz), the
approximations obtained for the perimeter in R4 are roughly
as good as those in the Cartesian system.

5. DETERMINING THE EULER NUMBER (PARTICLE NUMBER)

In addition to the area and the perimeter of the sub-
sets, Gi, of an image, B, frequently also the number of un-
connected subsets, Gj, within B is of interest. Besides, it
is of interest to see whether the subsets, G;j, have simple
or multiple connectivities. If N particles, G;, are con-
tained within B, which have a total of L holes, the Euler
number, E, of B in a two-dimensional space is

E=N-1L1.

For a single particle, the number of holes is equal to its
connectivity, which is the number of sections by which a
particle can be cut without increasing the number of
particles (De Hoff, 1968).

According to Gray (1971), the Euler number can be
determined by counting the "critical points." If we look at
the conditions in R?, these critical points, P, and Py, are
determined with respect to a tangent vector, t. One counts
all points, Py, of the contour of a particle (or the con;
tours of all particles in B) having the tangent vector, t,
and a positive curvature and all points, P,, with the same
tangent vector and a negative curvature. The Euler number,
E, then is obtained from

E = P1 P2.
If it is not the Euler number but the number of particles
in B, which is to be determined, the holes in the particles
must be closed before beginning the measurement. In special
cases it is possible to separate before the measurement
connected particles to be counted separately.

5.1 DETERMINING THE EULER NUMBER IN CARTESIAN COORDINATES

The Euler number can be found either by determining
the local properties of the individual particles (Gray, 1971)
or by erosion and dilatation by means of appropriately
selected structural elements.
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Fig. 11: Sets S, and S, de- Fig. 12: Sets S; and S, de-
termining the Euler number termining the Euler number
in Cartesian coordinates. in hexagonal coordinates.

If the Euler number is to be determined by way of the
local characteristics,e.g., all bit quads with the struc-
ture of [10] are counted and in this way the number, P;, of
critical points with positive curvatures is determlned The
number, P, , of the points with negative curvatures is ob—
talne? by counting the bit quads with the structure of [ 0]
and [ ] (Gray, 1971). If the Euler number is to be deter—
mined by Minkowski additions and subtractions, it is ob-
teined from

P] =A (B® Sl) -A(B® SZ)
P2 = A (B 6 S3) - A (B Q Sl) - A (BSO SZ)
E =P -P

1 2

It is seen that this method allows the determination of the
Euler number to be reduced to five area measurements in
‘accordance with (15). The sets, S} and Sy, are drawn in
Fig. 11. S3 consists of the points (0,0) and (-1,1).

5.2 DETERMINING THE EULER NUMBER IN HEXAGONAL COORDINATES

As in Cartesian coordiantes, also in hexagonal coordi-
nates the Euler number can be determined by local operations
or by area measurements. In hexagonal coordinates, the num—
ber of critical points with p051t1ve curvatures is equal to
the bit triads of the type of [ O] The number of points,

P,, is obtalned by counting the bit triads with the struc-
ture of [11] (Gray, 1971 , Hersant, Jeulin, Paniere, 1975).
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In a way completely analogous to the conditions in Cartesian
coordinates, also in a hexagonal coordinate system the Euler
number can be determined by four area measurements. The sets,
Sy and Sy, by means of which the original image must be trans-
formed prior to the measurement, is shown in Fig. 12.

5.3 DETERMINING PARTICLE NUMBERS

If it is not the Euler number but the number of par-
ticles, which is to be determined, basically the same tech-
niques are applied as are used to determine the Euler number.
However, the holes in the particles must be closed before
the measurements. Two methods can be applied to close the
holes in the particles. In each case it must be examined
which of the two methods is most advantageous, i.e., can be
applied with a minimum of computer time.

Initially, it can be assumed that an image, B, is de-
composed into subimages, By, by means of masks, Fq.

B; = B N Fy 1€{l,...., L}

Closing the holes is achieved by Minkowski additions of sets,
E;, consisting of one each of the eight individual points
adjacent to the origin and the origin proper, to the com-—
plement of the mask and by the connection of this changed
mask to the subimage, Bq:
8
F, (k) = igl F, (k= 1) ®E | N3B) 1€L, k €N

If the changed mask, Fy (k), is equal to the mask, Fy (k-1),
from the previous step in iteration, it holds that
- n!
F1 (k) =B 1
where Bl' is equal to the image, By, in which the holes in
the particles are closed. The mask, Fy (0), is identical
with the measuring mask, Flo

The other possibility of closing holes is by dilatation
of the individual particles ob B with the sets Ej described
above, followed by a reconstruction step. This process must
be repeated iteratively until the image does not change
any more:
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8
B' (k) = U |B' (k- 1) ®E, n B k €N
i=1

If B' (k) = B' (k = 1), then B' (k) = B', the image B in
which the holes within the particles are closed. This
iteration begins at B' (0) = B.

In special cases it is also possible to separate
connected particles for separate counting. Meyer, (1979)
has indicated an algorithm for this purpose.

6. CONCLUSIONS

It has been shown in this study how to extract measured
values from an image. The basis used thoughout was a
description of the image and of its elements by means of the
methods of the theory of sets. A major complication arises
from the fact that the image is not evaluated in a continuous
Euclidean, one must in a discrete space. As in any digiti-
zation, one must realize also in this case that the transition
from a continuous to a discrete space entails the character-
istic errors. These errors must be recognized and precautions
must be taken to prevent their producing inconsistent results
or results contradicting observations. A characteristic
example is the measurement of perimeters. To allow uniform
processing of the images on a computer, formulae have been
indicated for all coefficients of measure to reduce these
to operations using sets and to area measurements.

In all chapters of this study a comparison is made
between Cartesian and hexagonal tessellation of the plane. In
designing a new image processing system, such as the PACOS
system (Vollath, 1982), a decision must be taken in favor of
one of the two systems. The PACOS image processing system
uses Cartesian coordinates. Although the advantages of the
Cartesian system over the hexagoﬁal system are not very
significant at the level of fundamental considerations, they
do become apparent in considering the necessary detailed
algorithms which, however, have not been discussed in this
'study. Another major item not discussed in this paper is the
correction of the error caused by the rim of the mask. This
part was left out because it is related mainly to the
evaluation of the readings, not to surveying the image proper.




138 D VOLLATH: CONSIDERATIONS FOR MEASURING IN IMAGES
REFERENCES

Coxeter, H.S.N., Unvergdngliche Geometrie, Birkhduser Verlag
Basel, Stuttgart, 1963: p. 86-90,

De Hoff, R.T., Quantitative Microscopy, Edt. R.T. De Hoff,
F.N. Rhines, Mc Graw-Hill Book Comp., 1968: 291-325.

Gray, S.B., Local Properties of Binary Images in Two
Dimensions, IEEE Trans. on Comp. C-20, 1971: 551-561.

Hadwiger, H., Minkowskische Addition und Subtraktion belie-
biger Punktmengen und die Theoreme von Erhard Schmidt,
Mathem. Zeitschrift 53, 1950: 210-218.

Hersant, T., Jeulin, D., Parniere P., Basic Notions of
Mathematical Morphology used in Quantitative Metallo-
graphy, IRSID-Report, RE 322 bis Par. 1, 1975.

Matheron, G., Eléments pur une Théorie des Milieux Poreau,
Masson, Paris, 1967.

Meschkowski, H., Theorie der Punktmengen, BI-Wissenschafts-
verlag, Mannheim, 1974.

Meyer, F., in Nawrath, R., Serra, J., Quantitative image
analysis: Applications using sequential transforma-
tions, Microscopica Acta 82, 1979: 113-128.

Peipmann, R., Erkennen von Strukturen und Mustern,
Walter de Gruyter Berlin, New York, 1976: p. 219.

Rosenfeld, A., Pfaltz, J.L., Sequential Operations in Digi-
tal Picture Processing, JACM 13, 1966: 471-494.

Rosenfeld, A., Pfaltz, J.L., Distance Functions on Digital
Picture, Pattern Recognition 1, 1968: 33-61.

Rosenfeld, A., Connectivity in Digital Pictures,
JACM 17, 1970: 146-160.

Vollath, D., The Image Analysing System PACOS, Part. 1
Construction and Method of Operation, The Image
Analysing System PACOS, Part. 2 Examples of Applica-
tion, Praktische Metallographie 19, 1982: 7-23, 94-103.

Received: 1984-06-29
Accepted: 1984-10-25




