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ABSTRACT

The paper is devoted to the stereological estimation of length and surface area in anisotropic
structures. Statistical properties of various estimators are investigated. The relation between
estimators based on projections and intersections is studied. Finally an implementation of some
estimators in image analysis is described. The paper is partly a review of recent results and is
presented in a condensed way. The details including mathematical proofs can be found in the
referenced papers.
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INTRODUCTION

The paper presents a review of results concerning the statistical properties investigation of
intensity estimators of stationary anisotropic random fibre and surface processes in R%. Basically,
four sampling schemes are included for the estimation as classified in the following table.

Table 1. Classification of sampling schemes for fibre and surface processes.

direct probes indirect probes
fibres total projection on R! total projection on RY-1
surfaces | total projection on R?~! | intersection with hyperplane

By projection we always mean the total projection, i.e. measuring multiplicities of objects
overlapping by projection. Direct probes are followed by an immediate measurement while
indirect probes transform the process only and new probes should be applied after it.

In the first two sections various known estimators are defined by means of the projection mea-
sure and their unbiasedness, consistency and efficiency are studied by methods developed in
Ohser(1991), Bene3 et al.(1994), Bene$(1995), Benes at al.(1995). Explicit formulas for vari-
ances are obtained for Boolean models (Krejéif and Benes, 1995).

In practical stereological work the total projection is approximated by means of counting the
intersection number between the structure and probe. In section 3 this situation is described
in two ways (Chadoeuf and Benes, 1994). First the difference between variances of estimators
based on projection and intersection measure can be evaluated. Secondly the variance of the
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difference between the observed quantity of the structure and its intersection with the probe is
evaluated.

In the final section an application of the projection estimator in the plane in image analysis
is described (Ohser, 1995). It is of great practical importance because of the special type of
observable orientations by an image analyser.

DIRECT PROBES

Let ® be a stationary random fibre (surface) process on the Euclidean space (R,B,v)? with
Borel g-algebra and Lebesgue measure. Let A be the intensity constant of ® and R its rose of
directions (a probability measure of the space (M, M)? of axial orientations). For a bounded
window B € B¢ with »(B) > 0 let ®(B) be the length (surface area) of ® in B. Let @ be
a probability measure on M interpreted as the distribution of probe orientations (sampling
design). The projection measure ®g on B is defined by

QQ(B):/B]-'Q(m(z))tI)(dz), BeB, (1)

where Fq(l) = [y | cos J(I,m) | Q(dm) , | € M?, the cosine transform of @, is interpreted as
the measure of total projection of ® in B averaged with respect to Q. The intensity constant Ag
of @ is equal to A\g = AFrq, where Frg = [j;¢ Fr({)Q(dl). Then the basic unbiased estimator
A based on direct probes is

21 C))
A= 2
v(B)Frq ®
For the variance of this estimator it holds that
- A 2 i
wark = (e )? [ 95(e)pa@) - i, (3)

where gg(z) = v(BNB_;) is the set covariance function. We denote by p, pg the pair correlation
function (pcf) of ®, ¢, respectively. They are related by the formula pg(z) = %%p(m), where

Ig(z) = [ [ Fo(m)Fo(l)Wi(d(m,l)), W, being the two-point orientation distribution of @.
Explicit formulas for the variance of (2) are available in the case of Boolean models.

Theorem 1 Let ® be a Boolean model of compact subsets of straight lines (hyperplanes), then
var®q(B) = )\/ ]—g(m)/gB(a:)fm(dm)R(dm), (4)
M

where fr(K), K € BY is the mean length (surface area) of SN K of the fibre (surface) S C @
hitting the origin with orientation m.

Simpler formulas are obtained for B a ball since then gp does not depend on orientations.

An equivalent definition of the projection measure is ®o(B) = [y, fProj,(B) N,dyQ(dl), where
N, is the number of intersection points of ® N B with test hyperplane (line) located at y €
R! (y € R*1), Proji(B) is the projection of B onto line ! (in direction {.) In practice the
inner integral is approximated by a sum corresponding to a finite number of test probes. So
the estimator (2) is a continuous approximation of various classical estimators according to the
choice of sampling design @ :

a) @ = U uniform distribution, then (2) is equivalent to the estimator A= %B%);

b) @ = & denotes projection on (in) a single direction ! € M, estimator is dependent on R;

c) spatial grid estimator (Sandau, 1987) Q = %(6$+6y+62), z,y,2 € M3 mutually perpendicular.

Estimator \ = %Q% is unbiased for R = ¢ only.
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d) vertical spatial grid (Cruz-Orive and Howard, 1994). Let m = (6,¢) € M3, 8, being the
colatitude, longitude, respectively. Put Qe(d(0,)) = L(8(¢ - 9) + 6(E+ 5 — ) sin 0dOdyp, let ¢
has uniform distribution on (0, 7). This sampling randomization makes the unbiased estimator

A= 2¢u¢zB(B) independent of R.

Variances of estimators a)-d) were evaluated in Bene§(1995) and explicitly compared for Poisson
processes with Dimroth-Watson distribution R on M3, In Baddeley and Cruz-Orive(1995) the
non-existence of minimum variance unbiased estimator in stereological applications is empha-
sized due to the "incompleteness” of observable information. The authors present counterex-
amples when lower dimensional sampling probes yield smaller estimation variances. We obtain
further natural examples of this phenomenon in anisotropic structures, see the final example in
Benes et al.(1995).

INDIRECT PROBES

Let & € M? be the orientation of an indirect probe (projection foil of thickness ¢, section
hyperplane for a fibre or surface process ®). The transformed process * in R4~! has a rose
of directions R, on M1, Denote Jo% = Gr(@) [ F5(I)Ra(dl) for an integer exponent n,
Gr(l) = fyrsin J(I,m) R(dm), | € M, being the sine transform of R, Q the sampling design in
M?-1, Then the unbiased estimators $, L of surface, length intensity \, respectively, are

S TCONNN 710:)
J= v(B)Jg% d - tv(B)JgR’ (5)

B € B! being a compact window of positive v(B). The general theory starting with (3) can
be applied to derive the estimation variances. Specially for the Poisson hyperplane process and
a ball B, denoting Oy = rgzrd_“//;)’ it holds (Benes, 1995) that

: [ ri-3gp(r)dr Tk
varS = Oy_9\ , 6
w8 = O e sy (®)

Projections of line processes on R?~! lead to segment processes with generally dependent segment
length and orientation. This more complicated situation is discussed in Bene et al.(1995).
Again the estimators (5) depend on R, which is in practice unknown. Two natural sampling
randomizations are used to overcome this problem: IUR (isotropic uniform random) probes
or VUR (vertical uniform random) sections (Baddeley, 1985) and projections (Gokhale, 1990).
IUR, VUR sampling yields unbiased estimators

o*(B) .  9%(B)

5= pav(B)’ b= tpqv(B)’ (7)
_9y(B) . a5(B)
" wav(B)’ = twqv(B)’ (8)

respectively. Here o is uniform random on M9-1, wy; = Fu(l),pa = Gu(l) constants for ar-
bitrary [ € M¢9. In polar coordinate system | = (lyoyla—a) let € = (3,%,..%,14-1), where
l4-1 is uniform random. Then Q in (8) is a fixed measure on M9-! Q(dly...dlg_p) =
& sin®2 ... sinly_odly...dly_s.

Estimation variances in randomized sampling var = var(E(A|a)) + E(var(j\|a)) have two
terms. For IUR sampling in (8) we have e.g. var(E(})) = %vargn(a) for both § and £, this
term causes that the estimators are inconsistent. Explicit formulas for the second term are based

on the general theory.
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For the Poisson line process ® and a ball B we have e.g. for [UR sampling

A Gr( a)

va’r(ﬂ|a) n [pdu(B)

2] | an(r)dfm(r)Raam)

and for VUR sampling

m,-(j|§): %%/M%(m)/O""gB(T)dfm(r)R{(dm).

Comparison of estimation variances in R® for Dimroth-Watson distribution R is presented in
Bene§(1995).

PROJECTIONS AND INTERSECTIONS

The important step from non-realizable continuous sampling to practical discrete sampling was
studied in Chadoeuf and Bene3(1994) in R%. Let ® be a stationary fibre process, which is
projected on [ € M? to obtain ® = ®s,. Let a rectangular window B = (0, a) X (0,b) have sides
a, b parallel with x,y axis, respectively. Let the direction [ coincide with the y-axis. N, for given
y denotes the number of intersections ® N B. For h = &, n integer, call Ly(B) = h ) i Nin the
intersection measure of ® in B. An unbiased intensity estimator

Ly(B)

A= abFr(l)

(9)

will be compared with (2). The reasoning is based on a model for the pair correlation function
(pcf) pr of @;. In polar coordinates (r,6), where » > 0, =5 < 8 < 7 is the angle with y-axis.
The pcf p; is symmetric, i.e. it holds pi(r,0) = pi(r,0 + 7r) The fol]owmg assumptions will be
combined:

I) let p satisfy pi(r,0) = 1+ ﬂrﬂ + h(r,8) for functions ¢, h continuous in R? — {0}, where
h(r,0) = g(6)(1+ o(1)) for r — 0.

II) function ¢(8) satisfies ¢(8) ~ K (5 — 0)*+ for 8 — %, and c(f) ~ K_(5 + 0)*~ for  — —3
and real constants Ky, K_,ay > 0,a_ > 0.

III) function g(#) satisfies g(0) ~ Dy(5 — )P+ for  — %, and g(0) ~ D_(5 + 0)P- for 6 —» —%
and real constants Dy, D_,84 > 0,8_ > 0.

The variance of estimator (9) is

B Z]- cov(Nip, Njh)
var\ = 2 .
n202F% (1)
Theorem 2 Under the assumptions I-II in rectangular coordinates py(t,y) it holds that
b
cov(Ny, N2) = A [ (b= )(pi(t,y— ) = D)t (10)

for y # z and
2 c(0)dd ﬁ

var N, = N2 FA(1)( b/ 2 (g(g) +g(*g)))-

cosf
Theorem 2 can be used for the comparison of estimation variances in (2) and (9). On the
other hand the following result enables us to evaluate the asymptotic variance of the difference
between the projection and intersection measure.
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Theorem 3 Under the conditions I-II for h — 0 it holds that Ly(B) — ®(B) in quadratic

mean. If moreover III holds with cy., o, By, B— all greater than 1, then the speed of convergence
is given by

)+o(h?).  (11)

g(H)d()_/% | sin 0]c(6)d6

cos? 8 z cos? @

2 ah? 5 z
B(Lu(B) - 2(B))") = ~ N AW [
—2
The proof in Chadoeuf and Bene¥(1994) makes use of Matheron’s(1971) result neglecting the
"Zitterbewegung”.
Example: Let ® be an anisotropic Boolean segment process in R2 with length intensity A, rose of
direction R independent of the segment length distribution function H(ry=1-¢""97,¢> 0.
Using the technique of Benes et al.(1994) we get
p(0) cos? e~/
O=1+"—"—"—o——
pi(r,0) + ’\T]:Tzz(l) )

where p is the probability density of . This is in fact model 1) with ¢(9) = 2020 anq
=

9(0) = —4\%‘%. Let p satisfy limg_,1,/ p(8)(8 £ 5)17° < oo for some € > 0. Then we have
R
;@ By, all greater than 1 in II), IIT) and from Theorem 2 varN, = bAFr(0),

Vit + y2)p(arcta11t/y)dt
¢ @ty

Finally using Theorem 3 we obtain E(Ly(B) — &;(B))? = 5‘%(% + Gr(0)).

The generalization of these results to R? is not straightforward as in sections 1,2 where the
integral of pcf was to be evaluated, while here pcf itself is desirable. For some results in R? see
Chadoeuf(1995).

)
cov(No, Ny) = 23/2/\/0 (b—t)exp (-

APPLICATION IN IMAGE ANALYSIS

We consider a stationary random closed set ® in R? and denote by @ the fibre process of its
boundary. In this situation the outer boundary normal orientation distribution R is studied
on (0,27). Consider the length intensity estimator (2) in the form ) = (‘—%g)l, B € B2, where

®(B) = 1 [2" &/(B)dl. An alternative formula (Ohser, 1995)

L fo(z,r,l)dz
@(B) = limy [ JO0UE (12)
is used, where fo(,n,!) = lo(z)[1 — lo(z + (r,1))]. To obtain a discrete approximation of this
limit first consider a binary picture C = (¢;;), ¢ij = lo(zij), 1,7 € Z in a bounded window B.
Here z;; = (iA\,jfA) are grid points (pixels), A the digital resolution in the z-direction and f
the aspect ratio, i.e. fA is the digital resolution in the y-direction. Using special digital filter
Fy = (fim)nxn of order n with fi,, = 2™+5 and filtering C' with F, we get a grey-tone image
G = C + I, with n? bits per pixel, G = g5, gij = T S Citk,j+m fkm, 1,J € Z. Now denoting
b = 55 Iw(2i)(9i = k), k = 0,..,N — 1, N = 2"X" the grey-tone histogram of G, we
obtain the discrete approximation of formula (12) in the direction I;, i = 0, 8(n—1)—1 as

(Ohser, 1995)
N-1
®,(B) = d; 3. hi(k = klm{)[1 = (k = k|m{V)]. (13)

k=0
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Here d; is the row distance in ¢-th direction, m
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)

;7 are the masks (pairs of elements of F, defining

the direction /;) and (k = k|m) = 1 for k = k|m while (k = k|m) = 0 for k # k|m, where k|m
denotes the bit-wise or of the integers k£ and m. The intensity estimator has thus a form

Av(B) = 7r_/027T ®y(B)Qn(dl) = (=1 Z: (liyr — 1) 2(B),

Table 2. Estimation variance

1 8(n—1)—1

(14)

where @), is a probability measure on (0,27) corresponding

Order | (J, — 1)10° to F,. This estimator is of type (2), so the general theory
n f=1 f=2 yields its statistical properties. It is asymptotically unbiased

D) 544 10366 when n — oo, its bias depends on the rose of direction .

3 137 7620 The variance follows from formulas (3) and (4). Let fr in

5 03 4384 (4) be independent of m and B a circle in R?. We study the
variance factor ffén(m)R(dm) for n — oco. Assume that

00 0 0 R =U and denote J, = 7 02" fé"(m)dm, the asymptotics

is demonstrated by Table 2 for different aspect ratio f.
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