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ABSTRACT

The fraction of the two intersection densities of test lines
along and perpendicular to a known prevalent direction is considered
as a function of the concentration parameter Kk of the bimodal von
Mises distribution. This is done similar to Weibel(1980), who derived
the corresponding function for the Mariott distribution.

A table and. the asymptotic behaviour are given. Small deviations of
the test line system to the prevalent direction are considered.
Finally it is shown, that a three dimensional initial problem, raised
by biopedologists can be treated with the appropriate formula and
also with the results given in the paper of Mathieu et al. (1983),
depending on the assumed model.

INTRODUCTION

This paper is concerned with the problem of estimating the con-
centration parameter k of a bimodal von Mises distribution, assuming
that the angle of the prevalent direction is known. Because of tech-
nical constraints which are given for example by a microscope, the
parameter k should be estimated by measuring the intersection densi-
ties of two perpendicular test lines.

Weibel has solved this problem for the .(bimodal) Mariott distribu-
tion following an idea of Cruz-Orive. The concentration parameter K
of the Mariott distribution however, allows only to examine cases of
mild degree of anisotropy because it is bounded (K<1). That's why
biologists (Mathieu et al.,1983) and biopedologists raised again this
problem. The biopedological background shai¥l be outlined here.

Leaves falling on the ground are situated in a high degree of aniso-
tropy. In deeper horizons of the humus profile (for example in a
depth of 5 - 30 mm) there are still leaf residues, but situated in a
milder degree of anisotropy (lamellar structure).

In plane sections of the ground (polished blocks), cutted perpendicu-
larly to the surface in different directions, traces of the leaves
are obtained. The directions of these traces are assumed to be von
Mises distributed (bimodal) with the preferred orientation parallel
to the surface of the ground and a fix parameter k for each horizon.
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First the method of Weibel and Cruz-Orive will be extended to the case
of the bimodal von Mises distribution as Mathieu et al. (1983) have
done for the Fisher axial distribution. Then the results of small de-
viations from the prevalent direction are regarded. Finally the spa-
tial case is considered corresponding to the above application. Two
different models are compared. :

THE FUNCTION X = f(k)

Following the notation of Weibel (1980), who always considers
the orientation on half the orientation:circle, the density function
of the bimodal von Mises distribution is given by
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where IO(K) is a modified Bessel function (see for example Abramowitz
and Stegun 1970). The results of this paper are given for k20 but

can easily be extended to negative K because
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f(-k) = ) (see eq.4).

Weibel shows that
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hold, where BA is the length density of some anisotropic curves in

the plane and I (IL2) is the intersection density of these curves

: L1
hitted with a test line perpendicular (parallel) to the preferred
orientation of the curves. If the directions of the line elements are
von Mises distributed then
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Defining the value X as
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it is easy to derive that
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For the graph of X = f(k) see Figure 1. It is compared with the cor-
responding function of the bimodal Mariott distribution, which can
easily be identified because the graph is only defined for values

k€ [0,1] (only positive values of k are considered).




ACTA STEREOL 19845 3/1 , 13

The following representations of X are useful and were received by
elementary transformations. Essentially, representation (3) is the
fraction of the error function divided by Dawson's integral and in
this way X may be calculated by tables given in Abramowitz and
Stegun (1970).
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Fig. 1. a) The graph of f(x), k€ [0,15]; b) the approximation by for-
mula (6) (broken line); c) see the text for the graph on [0,1].

Using (3) it can be shown that 5% tends to V2w for k>~ and

hence the asymptotic behaviour of X is

X = V271K . (5)
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This formula has been improved by Bach (personal communication) deri-
ving the asymptotic series

V2mK a1 a2
X o2 > (a0+E—+:i-+...),
k-1
1 2k-3 1 g

= = - — = e—— - — >
where ao 2, a1 5t ak 7 ak_1 2.j=1 ajak—j ., kz2 .
On using the first two terms, it is

X =~ V2mk (1 - 4%) (6)

(see Figure 1 ). This leads to acceptable results for k>6 or X>6
respectively. Eq. (6) allows not only to calculate X approximately

for given k but also to calculate k for given X which might be the
more interesting case. Table 1 shows some values of Kk for given X< 10.

Table 1. The function X

f(k) , inverse tabulated.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

X

1 | 0.0000 0.1432 0.2749 0.3977 0.5137 0.6241 0.7301 0.8326 0.9323 1.0298
2 1.1257 1.2204 1.3142 1.4075 1.5007 1.5940 1.6877 1.7821 1.8773 1.9736
3| 2.0712 2.1703 2.2712 2.3739 2.4788 2.5858 2.6953 2.8074 2.9221 3.0397
4 | 3.1603 3.2839 3.4106 3.5406 3.6739 3.8105 3.9505 4.0939 4.2407 4.3910
5 | 4.5447 4.7019 4.8625 5.0266 5.1940 5.3649 5.5391 5.7167 5.8976 6.0819
6 | 6.2695 6.4604 6.6547 6.8522 7.0529 7.2570 7.4643 7.6748 7.8886 8.1057
7 | 8.3260 8.5495 8.7762 9.0062 9.2394 9.4758 9.7155 9.9583 10.2044 10.4537
8 [10.7061 10.9618 11.2207 11.4828 11.7481 12.0166 12.2883 12.5633 12.8414 13.1227
9 |13

.4072 13.6949 13.9858 14.2798 14.5772 14.8776 15.1812 15.4882 15.7982 16.1099

SMALL DEVIATIONS OF THE PREVALENT DIRECTION

In practice it is obviously difficult to realize the coincidence
of the test lines with the preferred direction. So it is of some
interest to know something about the error.

Let the test lines be orientated as before but the preferred direction
has now a deviation a # O . Then the value X depends on o:

- Z(a)

X(a) = (===
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and X(0) =X .
The function X(a) obviously has a maximum for o = 0 .
dx(a)l

Hence
a
o =0

= 0 , what is easy to verify because
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and

N' (o) = 2ksin 2(6-0)cos6d6
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0 m

have integrands which are symmetrical to the point 6=0 and 6= >

respectively if a =0 . Hence the integrals are vanishing.

Using this, the second derivative of X(a) can be written as (a =0)

: Z'' (0) N''(0)
e = - .
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The second derivatives of Z and N are
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and similarly
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The Taylor expansion of second order
2
X(a) = X(0) + X'(0)a + X'""(0)a
leads to an expression. of the relative error
- X(0)
|X(a) - X(0))¢ g
X(0) . (*
if the terms of higher order are neglected.

This shows in which way a small deviation of the prevalent direction
can influence the measured X.

+ |<)cz2 (xk >0)

SOME CONCLUSIONS

‘a) If the parameter k is known then the length density B_.can be
determined by eq. (2). This equation is preferred because the
coefficient Y01 can be transformed in the following way
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All the functions appearing in the last expression are well known
(erf(.) = error function) and tabulated; see for example Abramowitz
and Stegun (1970).

b) The problem of the biopedologists suggests to regard the line
elements as surface elements hitted by a section. All above was done
under the assumption that the traces of the leaves are bimodal von
Mises distributed. But, considering the spatial structure of the prob-
lem, the Fisher axial distribution seems also to be an acceptable
assumption for the normals of the surface elements.

The probability element of this distribution is

ar(e,4lx) = c(x).eX°°s %inoasap , 0 €[0,3] , 9€l0,2m ,

where thepole is at ¢ = = 0.
Following Mardia (1972,p. 233) or Downs (1966) respectively the trans-
formation

‘cos® = r-cosb' , sinecos¢ = r-sinb' (7)
leads to

2 v
aF(r,8'ly) = c(x).exr cos26 e x(l-r )'72r a8'dr ,
1 r

e'E[—— ] , r€[0,1) .

This shows that the corresponding conditional distribution of €'
given r = rO is a bimodal von Mises distribution and particularly for
given r = 1 with the same concentration parameter.

The density of the angle distribution for the traces of the leaves in

sections parallel to the pole direction is

) 1
ar(e'lyx) = Ir~dF(r.9'lx) '

r=0
which does not represent a von Mises distribution.
The probability of hitting the trace of a leaf with the test line
parallel to the pole direction in the section (ILl) is given by
™

a J i cos8'-drF (8']x)
2
% xr2c0526'— x(1—r2) 2r
= a.c(X) I T J r-cosf'-e ———— drdb"'
Y 1-r
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0o ‘0

where a is a norming factor.
The last term is received using the transformation (7) backwards.
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On the one hand it does not surprise this result being equal to that
of Weibel (1980, eq.10.63) which gives the probability of hitting sur-
face elements by the test line. The corresponding result holds for a
test line perpendicular to the pole direction in the section (ILZ)'

On the other hand Mathieu et al. (1983) considered line elements hitted
by test planes assuming that the line elements are Fisher axial dis-
tributed.

Both kinds of consideration are exchangeable because lines and planes
are interacting. Therefore it is possible to estimate x by ILI/ILZ

using table 1 or figure 1 given in the paper of Mathieu et al. (1983).

Comparing that figure with the figure 1 of the present paper, ithe
similarity of the results under the two different assumptions is
remarkable.

Finally, assuming the Fisher axial distribution, the surface density
SV can be calculated by
-1
SV - Yl (Xlo) 'ILl
where Yl(X’O) is tabulated in Weibel (1980,p.298).
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