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ABSTRACT

The use of the pair correlation function for
the analysis of a configuration of cell nuclei in
a rat liver is demonstrateds A procedure is sug=
gested which enables the stereclogical determina=
tion of the pair correlation function of the nu=
clei centres using related quantities of a thin
section of the rat livere.

INTRODUCTION

The stereological methods for the determina=
tion of spatial mean values as NV’ VV, SV or KV

and of spatial size distribution functions from
planar, thin and linear sections give no infor-
mation on the variabliity of the particle system
considered, on relationships between the particle
positionse '

A step towards getting those quantities con=
sists in the consideration of second=order quan=
titiess Let us assume that A is a random spatial
sphere configuration which is homogeneous (= sta=-
tionary) and isotropic, i.ee the distribution of
A is invariant under translations and rotationse.
The first second-order quantity of A of interest
is then the covariance Cy(h), h 2 0, see Serra
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(1982), given by
Cv(h) = P(Oea, hed), (1)

where h is a point with distance h to the origin
O. Hence, Cv(h) gives the probability that two

fixed points a distance h apart are covered by 4.

In the following we are concerned with thin
sections of sphere configurationse. Exact formulae
for the stereological determination of the cova-
riance from related quantities of thin sections
are not knowne Weibel (1980) and Gerlach & Stoyan
(1984) gave some approximate formulaee

Purther second=order quantities for the de=-
scription of a sphere configuration are related
to the positions of the sphere centres. From our
experience, the pair correlation function gv(r)

of the sphere centres is a suitable quantity for
the description of the Minner structure" of a
sphere configuratione It has the following mean=
ings. Let NV denote the mean number of spheres per

unit volume, dV1 and dV2, two volume elements a
distance r aparte Then N% gv(r) dV1 dv, gives
the probability that in dV1 and dV2 there is each

one sphere centrees In our opinion, the pair cor-
relation function gv(r) is in many cases more in-

structive than the covariance Cv(h) for the de-

scription of the variability of the sphere con-
figuration, for example in case of known sphere
radii distribution function RV’ particularly for

constant radii. The reason for this is the fact
that Cv is a quantity for general geometrical

structures, whereas &y is especially designed to
random sphere configurationse.

Hence, in the following we will give a method
for the stereological determination of the pair
correlation function 8y of sphere centres from

thin sections with known section thicknesse
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PATR CORRELATION FUNCTIONS OF RANDOM SPATIAL
POINT SYSTEMS

In the following it is assumed that the
sphere centres form a random spatial point system
§V which is homogeneous and isotropic (see Rip=

ley (1981))s Then the pair correlation function
gy(r) of fv is given by N% gy (r) dvy av, = pro=-
bability that in the volume elements dV1, de a
distance r apart there is each of one point of
Bye |

For the case of a Poisson process §V (pure=
ly random distribution of points) gv(r) g 1 is
obtained, see figo. 1. Values gw(10'<1 for a dis=

tance r indicate that there are fewer point
pairs in the point process with a distance ap=
proximately equal to r than in a Poisson process,
ieeo there is a repulsion of points within this
distances. Vice versa, gv(r)> 1 indicates an at-
traction of points with distance approximately
equal to r in the sense that there exist more
point pairs with such a distance than in a
Poisson processe. For hard=core processes with
hard=core distance T = 2 R (case of non=over-
lapping spheres with fixed radius R), gy(r) = 0O
for r<7T is obtained.

Often the form of 8y gives rise to the as=
sumption of a special model of EV‘ Figs 1 shows

pair correlation functions of various typical mo=
dels of random spatial point systems. There are
treated two hard-core processes (Matern's second
hard=core process, see Hanisch & Stoyan, 1981,
and the centres §V.of a dense random packing of

hard spheres), the Poisson process and a cluster
process (Matern cluster process). Furthermore,
from fige 1 two properties of gy can be seene

For a wide class of random point systems (mixing
random point systems, see ee«g8o Franken, Konig,
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Arndt & Schmidt (1982)) g(r)— 1 for r —» o0 is
obtainede For r— O in the most cases g(r)—ec<oo
holds.

4 g(r)

r
Fige 1. Pair correlation functions for various
models of spatial point systems
-—-- Poisson process

—— Dense random packing of hard
spheres

-.—.- Matern's second hard=core process
--------- Matern cluster process

STEREOLOGICAL DETERMINATION OF THE PAIR CORRELA-
TION FUNCTION FOR THE CELL NUCLEI OF A RAT LIVER

Fige 2 shows a diagram of a thin section
(section thickness 2 t = 4 um) of a rat liver.
The objects of interest are the spherical nucleile
The aim of this section is to describe = at least
partially = the spatial configuration of the cell
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Fige 2. Thin section of a rat liver

nuclei for this single thin sectiones Therefore,

59

suitable quantities have to be determined stereo=-

logically from the thin section.

For the description of the configuration of
the cell nuclei the following model is usede The
nuclei are assumed to be spheres with radii dis=-

tributed according to a distribution function RV.

The centres of the nuclei form a random spatial
point system- QV' The sphere radii are mutually

independent and independent of the point system
§V‘ Then in the thin section of the rat liver

the projections of the sectioned nuclei can be

observed as circular profilese Their centres form

again a random planar point system §A.

Obviously, from fige 2 it can be seen that
the configuration of observed circular profiles




60 KHHANISCH ET AL: PAIR CORRELATION FUNCTIONS

can be assumed to be = at least locally - homoge=
neous and isotropice Hence, we assume that the
centres of the observed circular profiles form a
part of a realization_of a homogeneous and iso-
tropic point system QA and, furthermore, that

§V is homogeneous and isotropic, t00e

A measurement of the radii of the circular
profiles shows, that radii approximately equal to
5 um occur very oftene From this the conjecture
results that the spherical nuclei approximately
have constant radii 5 hme This is supported by
the followinge For the mean radius of the circu-
lar profiles m, and the corresponding variance

2 . 2
6A we obtained m, = 4e2 pm and o4 = 1852 pnm

Theoretically, under the condition of constant
sphere radii R,

2.

2
4(t+R)
4 _ 2 3 _
Gi - R (32=37°) + R7t(80= 247) , (3)

48(R+t)2

where 2t is the section thickness. Then equation
(2) yields R = 4.8 um, equation (3) R = 4,9 pme
Because of the good correspondence of these two
numbers in order of magnitude of the measuring -
precision, also from this point of view the as-
sumption of constant sphere radii seems to be
justified.

Then the mean number Nv of nuclei per unit

volume was determined using the well=known for-
mula (see Weibel, 1980),

Ny

9
2 {my + t}

N

S (4)

where NA is the mean number of intersection cire
cles per unit area and Iy is the mean sphere
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radius (nuclei radius)e For the nuclei configura-
tion Ny = 1656 ° 10-4}1m-3 was computede. Using

this, other mean values of the sphereiconfigura-
tion such as VV, SV or KV can be determined. For

the aim of more insight into the inner structure
of the sphere configuration then the pair corre-
lation function gv(r) was determined stereologi=-
callye

For this Hanisch (1983) gave the integral

equation o

1 2 2
gA(r) = m £fv(u’t)gv( r 4+ u )du (5)

with “
t=%+ [[1-Ry(y)]dy
o O
+ JD=Ryu=y)] [1-Ry(»)] dys ué2t
L
£,(u,t) = :Jt [1-Ry (u-y-20)] [1-R,(1)]dy  (6)
17 3
+ =R d
DRy )]y

@ .

+ I (1- V(u-y)] [T-Rv(y):’dy; u> 2t

In this connection gA(r) is the pair correla=
tion function of the random point system iA.Of
intersection circle centrese It has an interpre-—
tation analogous as &yo

Por the case of constant sphere radii R, (5)
takes the form

d
0
where d = 2R+2te ‘
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Hence, gv(r) can be obtained by'estimating
gA(r) from the configuration of intersection cir-
cle centres and by solving the integral equation
(7)e

The pair correlation function gA(r) can be

estimated as followse. Assume that in a bounded
sampling window W (in our case W is a rectangle)
the intersection circle centres x1,»..,xN are

giveneThen the iniegrated quantity GA(r),

GA(r) = Ni g 2T x gA(x) dx (8)
is considered. It can be interpreted as the mean
number of points of fA in a circle with radius
r centred at a randomly chosen point of iA mule
tiplied with NA‘ Hence, there occur edge effects

in the estimation of GA(r), because the mentioned

point number can not be computed for points of
§ , near the boundary of W exactly. However,

there exist various unbiased and strongly con=
sistent estimators using the homogeneity of §A

for correcting these edge effects (Ripley (1981)
and Ohser & Stoyan (1981))e One of them is

N
By) = > (AlW-xp) 0 (-x )7 (9)

i,j=1
O<d(xi,xj)<r
where d(x,,x.) denotes the distance of x; and X3

1'%
W-x; = {xe R® s x+x; € W} denotes the set W shif=

ted by -x; and A(B) denotes the area of a set Be
Hence, GA(r) is obtained by summing up over all

point pairs in the window with distance less than
r, where each point pair gets = in order to cor-

rect edge effects = the weight Wi o= A((W-xi)n
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(W-—Xj))'1; see fige 3o

W W+ (x; =)

Vi

Fige 3+ Determination of the weight LA used
| in (9) J

This estimator @A(r) is asymptotically nor-—

mal, see Heinrich (1984). From this an estimator
gA(r) of gA(r) can be obtained by numerical dif-

ferentiation. Of course, it seems also to be ap-
propiate to use a kernel estimator analogous to
(9) for obtaining an estimate of gA(r) directly,

see eege Jolivet (1984) and Taylor (1983).

The pair correlation function éA(r) for the

cell nuclei obtained in the described manner is
given in fige 4.
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Fige 4. The pair correlation functions gA of
the intersection circle centres and gv
of the nuclei centres
Using this function integral equation (7) was
solved numericallye For doing this we have trans=
formed the problem into a linear fitting problem

with a side condition which results from the non=-
negativity of gV(r). The transformed problem can

be solved with standard methods. Examples show
that this procedure is relatively stable in the
sense that fluctuations of the function gA(r)

cause fluctuations of gv(r) in the same order of
magnitude. Details will be the subject of a
further papere
The so obtained pair correlation function
V(r) of nuclei centres is also shown in fige 4e
The hard-core distance seen there (gv(r) = 0 for
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r< 14 pm) is due to the fact that the cell nuclei
are non-overlapping and that there is a further
repulsione Furthermore, it can be seen that the
first peak of év is somewhat higher than that of

éAg it is also shifted somewhat to the right. Up
to these two exceptions év is very similar to éA’

The reason for this is that integral equation (7)
yields gA(r)asgV(r) for r not too small in com=

parison with d = 2R+ 2t. The peak of év in

r = 18 um indicates that pairs of cell nucleil
with approximately this distance are favourede.
and, hence, that the 'conventional! cell radius
is about 9 pmme Clearly, this analysis of the
nuclei is only a further tool for the stereolo-
gical description of such a cell structure and
it has to be connected with common methods for
analyzing the cells themselveses The frequency

of pairs of nuclei with other distances x'>18}1m
corresponds to that for a Poisson processe
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