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ABSTRACT

Simulation is used to estimate the distribution of
orientation-dependent measurements made on 3-dimensional objects.
Various methods are examined for generating the orientations in which
measurements are made. The different methods lead to ways of checking
the distribution of the resulting rotation matrices. The most
efficient in terms of the number of random variables required and the
mechanism for constructing the matrix is chosen. The simulation is
incorporated within an interactive user-friendly computer package
referred to as GLOM. Objects are represented by their outlines on
serial sections which are traced into the computer via a bitpad and
reconstructed into a 3-dimensional polyhedral representation. A potato
is used as an example. Caliper diameters are measured by giving the
reconstructed potato an isotropically Uniform random (IUR) rotation
and finding its length in a fixed direction. The distribution of
caliper diameters is found and used to estimate the mean caliper
diameter.

Key Words: diameter, random rotations, simulation,
3-dimensional reconstruction.

INTRODUCTION

The irregular structure of real objects can be explored by
cutting them up into serial sections and reconstructing the
information into a 3-dimensional computer model. The representation of
the object can then be viewed as a whole or in parts in any
orientation with different components highlighted, (see for example,
Briarty and Jenkins, 1984). It can also be extensively measured using
standard methods to find section perimeter, area and centroid (Bowyer
and Woodwark, 1983) and more complex methods to estimate volume (Cook
et al., 1980) and surface area (Marino et al., 1981). We can also take
advantage of the computer representation to make further measurements.

Many 3-dimensional measurements, such as volume ratio can be
estimated from lower dimensional probes using results from stereology
(see for example, Weibel, (1980)). Some properties, however, can only
be estimated from the whole object, for example overall shape and
diameter (De Hoff, 1983).

The diameter of a 3-dimensional object indicates its size
but can be defined in a number of different ways, for example as the
average of the largest internal chord and one perpendicular to it, the
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average of the width in X, Y or Z directions or the diameter of a
volume equivalent sphere (see, for example Rink, 1976). One that has
no shape assumptions or dependence upon measuring orientation is the
mean caliper diameter. This is the distance between two parallel
planes tangential to the object averaged over all orientations of the
planes. It can only be measured on the 3-dimensional object and is
easier to carry out on a computer model than on the original object
which may not be of manageable size and rigidity or on a physical
model which then has to be held and measured in precise orientationms.
Hull and Houk (1953) did just this when computers were less available
to measure random cross-sections of wire-frame models of various
polyhedra. The mean caliper diameter can be estimated from the
computer model by applying random rotations to the data set and
recording the range of coordinates in a fixed direction (Woody et
al.,1980).

There are various ways of randomly rotating the data set
(Altmann, 1986). One way is to multiply the points by a rotation
matrix. The matrix elements are formed from functions of random
variables. The probability distribution of the random variables
affects the random nature of the matrix. This in turn affects the
distribution of an orientation-dependent measurement like the caliper
diameter.

Simulation using random rotations was implemented in a 3-
dimensional computer reconstruction package, GLOM (Coleman et al.,
1988). The package performs a variety of tasks including:

(a) the control of input of outlines traced manually from
suitably scaled photographs, computer assisted tomography (CAT) scans
or any other representation of sections placed on a computer bitpad.
The sections may contain outlines of several different components,
such as body wall, backbone etc.

(b) the rationalisation of the outlines to form shapes data
which have a maximum of 100 points ordered from the 9 o'clock position
and which are free from artefacts such as loops and cusps. The
rationalised shapes are stored as ordered lists of (X,Y) coordinates
with their component category and layer number. A Z value is
calculated from the layer number, the final magnification, a bitpad
scaling factor and the section thickness. Thus profiles in sections
are converted to shapes in layers and consist of ordered triplets of
points (X,Y,Z2).

Figure 1 a) Computer reconstruction of a recurrent colonic tumour, backbone
and ureter inside body wall b) the tumour in an alternative orientation.
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(c) the automatic alignment of layers by minimising the
distance between alignment markers, if they exist, or by superimposing
centroids of key shapes. Additional adjustments can be made
interactively by requesting small incremental changes in the rotation
or position of one layer to make it coincide with a reference layer.

(d) the display of selected categories, layers or shapes in
any colour and orientation. Figure la is a photograph of the 3-
dimensional reconstruction of 23 CAT scan slices of a recurrent
colonic tumour as displayed on a Tektronix 4107 computer graphics
terminal. The outline of the body wall surrounds the tumour and
outlines of the backbone and ureter are also shown. Hidden lines have
been removed from the display. Figure 1b shows the same tumour rotated
to show the bifurcation. ‘

(e) the extensive mensuration of individual shapes, the
whole data set or any sub-set. Measurements include those which are
orientation-independent such as volume and surface area and those
which depend on orientation such as caliper diameter. These are
obtained by simulation with random rotations.

We consider here the estimation of the distribution of
caliper diameters over random orientations. As a simple example a
potato is sectioned and reconstructed into a 3-dimensional computer
model. The following section discusses ways to construct rotation
matrices. An efficient method is selected and incorporated into the
interactive computer graphics environment and results using the potato
are presented and discussed.

MATERIALS AND METHODS

A sample of orientations in which measurements are made can
be obtained by taking small increments in the orientation variables,
for example 6 and ¢ in spherical polar coordinates. Hull and Houk
(1953) used carefully chosen representative orientations to obtain the
distribution of cross-sectional areas in wire-frame models of various
polyhedra. In general, randomly chosen orientations give a more
reliable coverage.

There are many criteria of randomness leading to different
distributions of the orientation variables and the arbitrariness of
the choice can lead to paradoxes, such as Bertrand's paradox (see, for
example Weibel, 1980). The criterion of randomness chosen must be
appropriate for the use to which it is put. The principle of
invariance is expressed by Mackenzie (1958) as the requirement that
the result of a calculation is unchanged or invariant for any
displacement of the whole figure. Here, the measurements of interest
are distances which are invariant and thus it seems reasonable to
choose a criterion of randomness which is similarly invariant.

Three-dimensional invariant directions are selected such
that if they were emanating from the centre of a unit sphere, they
would intersect the surface of the sphere at points which are
Uniformly distributed over the surface of the sphere. This is referred
to as isotropic Uniform randomness (IUR). Kendall and Moran (1963)
note that this is the only probability density function for random
orientations which is invariant. The mean caliper diameter is defined
over IUR orientations.

Rotation matrices can be generated a) by considering rotation
about a random axis by a random angle, b) by specifying 3 random
vectors and combining them into a rotation matrix or c) by creating an
orthogonal matrix from one random vector and concatenating it with a
rotation about a fixed axis by a random angle. These different methods
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provide ways of checking the distribution of the resulting matrices.
The number of random variables required for each method varies as does
the mechanism of generating the random variables so that the rotations
are IUR. This is an important consideration where simulation is
concerned.

The IUR criterion indicates how random directions can be
generated for the rotation axis. The probability of the random line
hitting a patch s on the unit sphere surface must be §s/4x. In
spherical polar coordinates the patch is approximately of length §6
and width sin®é¢ as shown in Figure 2, giving §&s = sin@6¢66.
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Figure 2 Probability element for an isotropic Uniform random
direction.

Thus, the element of probability is
sin8§$66/ (4x) 0<6=<nwm, 0=<¢=<2n
This represents a joint probability density function of independent
variables, © and ¢ with £(8) = (1/2)sin® and g(¢) = 1/(2x).
The distribution functions are
é

(]
J(l/Z)sinedB = (1l-cos8)/2 and Jl/(Zw)d¢ = ¢/(2r)

0,
Distribution functions are Uniformly distributed on (0,1)
and so suitable random values of 8 and ¢ may be generated by selecting
Uniform random variables U, and U, from (0,1), and setting
U, = (1-cos8)/2 and U, = %/(2«). From these, 1-2U, = cos®
which is equivalent to-equating cos® to Ui and hence 6 = arccos Ui
and similarly, ¢ = 2xU, .

The equations ofJ the direction cosines 1,m,n of the random
line depend upon the way © and ¢ are defined with respect to Cartesian
X, Y and Z axes. Figure 2 shows one arrangement. In this case, for
the angle, XA, between the line and the X axis

1 = cosXA = sinBcos¢
similarly for the angle, YA, with the Y axis
m = cosYA = sinBsin¢g

0
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and for the angle, ZA, with the Z axis
n = cosZA = cos®
We now consider the choice of angle V to ensure that the
rotation is IUR. Kendall and Moran (1963), following the work of
Deltheil,(1926), show that the probability element must be
(1/7)sin“(V/2) dV, leading to the distribution function, F(V),

v 2 1
F(V) = |(1/7)sin®(V/2)dV = (2r) L(V-sinV)
0

~

Thus V is found by selecting a random variable, U, , from the Uniform
(0,1) distribution and solving V - sinV = 2xU, . Note that V is not
chosen directly from the Uniform distribution.

The direction cosines 1l,m,n of the rotation axis and the
angle, V, are now combined into the random rotation matrix,

12A+cosV lmA-nsinV lnA+msinV
lmA+nsinV m2A+cosV mnA-lsinV (1)
1InA-msinV mnA+lsinV  n2A+cosV

where A = l-cosV. Thus 3 independent random variables are required to
flnd(l) but solv1ng for V requires extra work as it involves an
intrinsic equation in V.

The trace of the rotation matrix is Y = 1+2cosV. Kendall
and Moran (1963) show that the probability density of W = cosV is
proportional to

£(W)aw = 25in2(V/2)dV = (l-cosV)dV
and from this the distribution function of the trace, Y, can be
obtained as

G(Y) = (1/7)(J((3-Y)(Y+l)/2)-arccos((Y-1)/2)+n).

The traces of IUR matrices should have this distribution however they
were constructed and so this provides a check that matrices used in
simulation have the required distribution. This is only a check as it
is possible for the traces of other types of matrices to have this
distribution.

Random rotation matrices can also be generated by choosing
three independent random vectors and combining them into an orthogonal
3x3 matrix (Kendall and Moran, 1963).

The independent random vectors, r, can be constructed from
random angles via direction cosines as above giving r =~ (1,m,n), or
they can be taken directly proportional to three independent Normal
variables, X1 X2 X3, with mean zero and unit variance,

r = (X /Cc, X,/C, X /C) where C = 2X12

Chooslng a vec%or in thls way is equivalént to choosing a
point with joint probability density function

(2m) > exp(-:x 2 /2)

The equation ZX12 = C defines the surface of a sphere. The joint
probability density function

(2) "> 2exp(-C2/2)
is constant and so the direction of the vector (X,,X,,X,) is Uniformly

distributed on the surface of a sphere and IUR as requited (Mackenzie and
Thomson, 1957).
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Random vectors can be combined into an orthogonal rotation
matrix by vector algebra. If a and b are two independent random
vectors, then the vector perpendicular to a in the plane defined by a
and b is given by

c =b - a(a.b)
The vector product of a and ¢ gives a third vector mutually
perpendicular to a and ¢

d =axcg
and the three vectors a, ¢ and d can be used as the columns or rows in
a random orthogonal rotation matrix. This method requires the
generation of 6 random variables per matrix.

The construction using Normal variables can be used to show
that each element in the matrix is Uniformly distributed (Cramer,
1946, p240). The variable

1o

o
o

z-xj/j(zxiz/n), 0<Z</n

has a modified t distribution
(n-3)/2
f(Z) = I'(n/2).(1-Z2/n)
J(om) .T((n-1)/2)

When n=3 this reduces to the Uniform distribution.
£(2) = 1/(2/3) 0<Z<JJ/3

In rotation matrices, the variable of interest is + Z//3. Thus each
element in the rotation matrix is Uniformly distributed on (-1,1). The
elements are not independent and only 3 are needed to specify the
matrix (Jeffreys and Jeffreys, 1946, p51).

The construction of the rotation matrix can also be
interpreted in a different way. The direction cosines of ome vector
make up the first row or column of the matrix directly. Two other
orthogonal unit vectors are then formed from the sines and cosines and
make up the rest of the matrix. For example,

sinBcos¢ sinBsing cos8
-cosBcos¢ -cosBsing sin®
sing -cos¢ 0

Although this matrix is orthogonal it only provides rotation in two
planes. Full rotation is attained by choosing a third angle, o,
Uniformly on (0,2n) and multiplying the matrix for rotation about the
X axis by this angle, (see below) by the above matrix. The resulting
rotation matrix is

sinBcos¢ sinBsing cos®
-cosBcosgcosatsingsina -cosBsingcosa-cosgsina sinBcosa (2)
cosBcosgsina+singcosa cosBsingsina-cosgcosa -sinBsina

This construction only requires the generation of 3 random
variables per matrix. It is the most efficient of the 3 methods of
constructing IUR rotation matrices discussed above and it can also be
used to express the rotation matrix as a rotation about the X, Y and Z
axes.
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In the three-dimensional reconstruction package, GLOM, data
can be displayed in any orientation by specifying angles of rotation
about the X, Y and Z axes. This method of requesting views is preferred
to the alternative of giving a rotation axis and angle as it is easier
to visualise. As a further aid, rotations can be specified in any of
the orders XYZ, ZYX and XZX. These angles are referred to by names
such as pitch, tilt and roll in commercial 3-dimensional reconstruction
packages, for example VIDEOPLAN by Kontron Bildanalyse GMBH, Breslauer
Str. 2, D-8057 Eching/Munich, FRG.

The three methods of constructing IUR rotations discussed
above involve the generation of 3 random variables and solving 1
equation, 6 random variables and 3 random variables respectively. The
last method is the most efficient and can also be adapted to take the
same form as rotations requested by the user.

A 3-dimensional rotation of a point (x,y,z) by an angle, X,
about the X axis is performed by

(x,y,2) 1 0 0 = x',y',z")
0 cosX sinX
0 -sinX cosX

in a left-handed Cartesian coordinate system (see, for example, Newman
and Sproull, 1979) where a positive angle causes a clockwise rotation

as viewed from the positive axis. Rotation about the Y axis and the Z

axis are given by the matrices

cosY 0 -sinY cosZ sinZ 0

0 1 0 and -sinZ cosZ 0

sinY 0 cosY 0 0 1
respectively.

A 3-dimensional rotation about the X, then Y, then Z axes is
effected by the matrix multiplication of the simple rotation matrices
and results in the matrix (3)which is of a similar form to (2) above.

cosY.cosZ cosY.sinZ -sinY
sinX.sinY.cosZ-cosX.sinZ sinX.sinY.sinZ+cosX.cosZ sinX.cosY (3)
cosX.sinY.cosZ+sinX.sinZ cosX.sinY.sinZ-sinX.cosZ cosX.cosY

There are six permutations of X,Y and Z rotations and a
further six of the form X then Z then X again which will all produce a
3-dimensional rotation. Each composite rotation matrix has one
element with a single trigonometric ratio in the row corresponding to
the first rotation axis (X=1, Y=2, Z=3) and the column corresponding
to the last rotation axis. The particular trigonometric ratio is the
sine of the middle rotation angle for a rotation about 3 different
axes and the cosine of this angle if the rotation was about only 2
axes, that is of the XZX type.

The construction of the random matrix, (2), can be made to
comply with any of the 12 permutations by altering the order of the
initial vector, placing it in a different row or column of the matrix
and relating 6, ¢ and a to the X, Y and Z angles. For example, (2)
corresponds to (3)if

X=a + n/2

Y=-6 - n/2
and Z=¢.
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Thus, the rotation matrix for simulation can be constructed
in the same way as that for chosen rotations in whichever order they
are defined. Two of the X,Y or Z rotation angles are taken as Uniform
random variables, as is the trigonometric function of the third angle.
As each element in the rotation matrix must be Uniformly distributed,
the nature and position of the single trigonometric function in the
rotation matrix dictates which of the trigonometric functions must be
Uniformly distributed to obtain the correct orientation distribution.

Random XYZ rotations were generated by considering the
composite matrix for an XYZ rotation ((3)above) and choosing the X and
Z angles from the Uniform (0,2r) distribution and sinY from the
Uniform (-1,1) distribution. The trigonometric ratios were entered
into the rotation matrix. A sample of 150 random matrices was
generated in this way and the goodness of fit of the elements to the
Uniform distribution was assessed using the chi-square test.

To demonstrate the application of simulation with random
rotations, a potato was chosen for 3-dimensional reconstruction as it
is an example of a real object of irregular shape and manageable size.
Figure 3a shows the potato and its diameter measured in an arbitrary
direction. The potato was cut into 9 serial sections in a plane
perpendicular to the measured diameter. The outlines on serial
sections were copied onto paper, traced on a computer bitpad and
stored in the computer. The section thickness was calculated by
dividing the measured diameter by the number of sections and Z values
were allocated to each outline. Figure 3b is a photograph of the
reconstructed potato.

%%w@fl%

Figure 3 a) The potato being measured and sectioned b) computer
reconstruction of 9 serial sections through potato.
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A sample of 500 random matrices was generated and applied to the
potato data set. The range of X values was found for each rotation and
the frequency distribution and summary statistics of the simulated
caliper diameters were found.

RESULTS

From the initial sample of 150 random rotation matrices, the
goodness of fit of the matrix elements to the Uniform distribution was
assessed using the chi-square test. The range of chi-square values for
the 9 elements was 3.8 to 13.5 (on 9 degrees of freedom). Although
these random variables are difficult to assess formally as they are
not independent, they do not indicate any serious discrepancy. The
trace of the matrices was similarly compared with the theoretical
distribution and the value of chi-square with 7 degrees of freedom was
11.3 which shows no lack of fit.

The frequency distribution and summary statistics of the caliper
diameters generated by the sample of 500 random matrices is given in
Table 1.

Table 1 Frequency distribution of 500 randomly-orientated caliper
diameters of the reconstructed potato.

Caliper diameter (mm) Frequency

44-45 3
45-46 8
46-47 16
47-48 ) 23
48-49 29 mean = 52.78mm
49-50 39 standard deviation = 3.42mm
50-51 44 standard error
51-52 41 of the mean = .0068mm
52-53 46 minimum = 44 . 52mm
53-54 52 maximum = 59.10mm
54-55 51
55-56 43
56-57 45
57-58 28
58-59 30
59-60 2

Total 500

The caliper diameters range from 45.5mm to 59.1 mm. The standard
deviation is large as the diameters include the longest and the
~shortest. The standard error of the mean can be made as small as
required by increasing the number of simulated measurements.

The corresponding histogram is in Figure 4. The distribution is
slightly skewed to the left reflecting the assymetric shape of the
potato. .
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Figure 4 Histogram of 500 randomly-orientated caliper diameters of the
reconstructed potato. :

DISCUSSION

The 3-dimensional reconstruction gives a polyhedral approxi-
mation to any real structure. The closeness of the approximation
depends upon the number of sections originally taken and the number of
points used to represent them.

The advantage of using IUR rotations in which to measure
caliper diameters is that their distribution corresponds to that of
caliper diameters of randomly-orientated objects, for example, when
cutting through rock or in computer-assisted tomography (CAT) scans.
The results of the simulation can be compared with those obtained by
slicing through a large number of separate structures with a single
section. The results can also be used in formulae for which IUR is the
standard. For example, the mean caliper diameter estimated from IUR
rotations is used to predict the number of particles per unit volume
from the number of profiles per unit area. It is also used in shape
parameters having a value which can be calculated for many analytic
objects (Weibel, 1980).

Although there are various methods for generating rotations,
they are not all equally efficient for use in simulation. An
interesting alternative uses quaternions (Martin, 1985) but although
this method is efficient for computing compound rotations it requires
more operations to rotate each point. By making the random rotations
compatible with user-chosen orientations the interactive nature of the
computer package can be maintained so that any simulated measurement
can be examined by displaying the object on the computer screen
rotated to the exact orientation.

The observed distribution of orientation-dependent
measurements can be compared with any suitable theoretical model to
aid interpretation of the structure. For example, caliper diameters of
hypothetical ellipsoids, cylinders or rectangles can be generated.
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The accuracy of the empirical distribution obtained from a
sample of IUR rotations increases with the number of simulations used
but also depends upon the simplicity of the objects involved. Woody et
al. (1980) make 500 measurements to estimate the mean caliper diameter
of the polyhedral approximation to a sphere. Warren and Durand (1981)
find 5,000 to 10,000 random sections in their analysis of shape
parameters for various analytic solids including rods and
tetrakaidecahedra. Warren and Naumovich (1977) calculate at least
10,000 random intercepts through ellipsoids, rounded cubes and prisms.

Simulation with random rotations provides an interesting and
versatile way to improve the evaluation of any object represented by
serial sections. GLOM has been used to analyse 3-dimensional
structures from light microscope slides of kidney biopsies, electron
microscope sections of cockroach brains, CAT scans of human tumours
and mathematically-defined outlines representing the region that a
person can reach from a restricted seated position.
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