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ABSTRACT

To predict the precision of systematic sampling in design stereology is an old problem.
In G. Matheron’s transitive theory the variance is decomposed into the extension term,
which represents the trend and it can be estimated from data, a ’Zitterbewegung’ term,
which is neglected because it oscillates about zero, and higher order terms which are
ignored. Recently, K. Kiéu and coworkers have established a precise connection be-
tween the extension term and the smoothness properties of the measurement function
(e.g. the "area function’ when estimating a volume from Cavalieri sections), and com-
pleting the Zitterbewegung term. The extension term is always a good approximation
of the variance when the number of sections is very large, but not necessarily when
this number is small. In this paper we propose a more general representation of the
variance and we construct a flexible extension term which approximates the variance
satisfactorily for an arbitrary number of sections.

Key words: Cavalieri estimator, extension term, object-m, stereology, systematic
sampling, Zitterbewegung.

1 INTRODUCTION

Cavalieri sampling is widely used in design stereology to estimate the volume of
a bounded object from systematic sections. Error predictions based on Matheron’s
transitive theory (1965, 1971) have been used over decades — see also Gundersen
and Jensen (1987), Cruz-Orive, (1989, 1993). The variance is decomposed into the
so called extension term, a Zitterbewegung, and higher order terms. To approximate
the variance, only the extension term is used.

In general, the problem is to estimate the integral of a bounded function f, called the
measurement function, over a bounded domain, by systematic sampling at abscissas a
constant distance T apart. Recently, Kién Kiéu and coworkers, (Souchet, 1995, Kiéu,
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1997 and Kiéu et al, 1998), have found that the extension term is of O (T*"*?), where
m, called the smoothness constant, is the order of the first non-continuous derivative of
[ they have also completed the Zitterbewegung. Gundersen et al (1998) note that the
extension term is a good approximation of the variance when T is small enough. For a
practical working range where 7 is not small, however, the variance may behave quite
differently as O (T*"*2), and the recent theory does not quite explain this. In this paper
we start from a generalized representation of the variance and we allow terms from the
Zitterbewegung, and higher order terms, to be recruited into the traditional extension
term using precise criteria. As a result, we obtain a flexible extension term for any
particular f which approximates the variance satisfactorily for any interesting range
of T. For the time being our approach applies to area functions whose form is known
analytically (at least at some points, see § 2.2) and is free from measurement errors.

2 SYSTEMATIC SAMPLING ALONG AN AXIS: CURRENT THEORY

2.1 Problem, sampling and unbiased estimation

The target parameter may be the volume Q of a bounded, connected and non-random
subset X C R3, namely:

Q:/_vif(:v)d:v, (N

where f(x) denotes the area of the intersection between X and a plane normal to
a fixed, conveniently oriented sampling axis, at a point of abscissa z. In a general
context, f : R — R* is a bounded non-random function, called the measurement
function, which is integrable in a bounded domain H and vanishes outside H; in the
Cavalieri context H is the orthogonal linear projection of X on the sampling axis.
An unbiased estimator of Q is:

Q=T f+kT)=T (fi+fo+ .. +f), 0)

kez

where z is a uniform random variable in [0,7), T the distance between consecutive
planes — for convenience we consider 7' € (0, length(H)) — and fi, fo, ..., fu

the section areas at the sampling points which lie in H. The mean value of n is
E(n) = length(H)/T.

2.2 Characterization of the measurement function f

A prerequisite for a proper choice of the variance representations given later is the
characterization of f according to Souchet (1995), Kiéu (1997), and Kiéu et al (1998).
Given a function & : R — R*, the amplitude of the jump or ’transition’ of the kth
derivative h*) of h at the abscissa 2 is expressed as follows:

Shi) () = li1n+ A (y) — lim 2M(y), (z € R, k=0,1,...). 3)
y—a y—a—
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Further, Dh*) will denote the set of points where h(*) is non-continuous, namely:
DA™ = {a;|Sh"(2;) # 0, i € Z}, (k=0,1,...). ()

The function k, and in particular the measurement function f is (m,p)—piecewise
smooth if its support is bounded and if:

(@). Df™ = @, (k< m), that is, all derivatives of f of order less than m are
continuous, (i.e., m is the order of the first non-continuous derivative of f).

(b). For m < k < m +p, f* may have only a finite number of jumps, and they
have to be finite.

2.3 Recent variance representations and approximations (K. Kiéu et al)

The classical, well known representation of the variance of @ is:

var(@) =T i g(kT)—/_:g(h)dh, )

k=—c0

where g is the covariogram of the measurement function f, namely:

o) = / £(2) f(z + h)de, (=00 < h < o0), ©)
(e.g. Moran, 1950). To estimate Var(@) from data, Matheron (1965) used the classical
Euler-MacLaurin summation formula. To allow for transitions of f(z) at points other
than the ends of its support, Souchet (1995), Kiéu (1997) and Kiéu et al (1998) have
derived a refined version of the Euler-MacLaurin formula which leads to the following
variance representation. If f is (m,p > 1)—piecewise smooth, then it can be shown
that g is (2m + 1,p)—piecewise smooth, (K. Kiéu, personal communication, which
corrects his own result in Kiéu, 1997, pp. 53-54), and

Var(Q) = Varg(Q) + Z(T) + o(T?"*?). ™

The term Varg(Q) in the right hand side of the preceding expression is called the
extension term, and it constitutes a good approximation of Var(Q) when T is small
enough; the extension term has the advantage that it can be estimated from the data
if a suitable model is adopted for g. Its expression is:
ot B2m+2
V. ( ) —_ _T2m+2 . . 8 (2m+1) 0 , 8
arg( Q __(2m+2)! g (0) ®)
where By; is a Bernoulli number, e.g. By = —1/2, By = 1/6, By = -1/30, Bs =
1/42, etc., and Byj1 = 0, (§ = 1,2,...), see Abramowitz and Stegun (1965). Further,
the term Z(T) typically exhibits an oscillating behaviour about 0, and it is called the
*Zitterbewegung’. Its expression is:

Z(T)=-T""** >~ Pyypar(c) Sg®"*+(c), ©)
{c€Dg>»+D\0}
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where Pjr(z) = Pj(z/T — [¢/T]), [] denotes the integral part of *-’, Pj(z) =
Bj(z)/5!, (i > 1), and Bj(z) is a Bernoulli polynomial (Abramowitz and Stegun,
1965, p. 805); B;(0) = B; is the jth Bernoulli number. The oscillating behaviour
of Z(T) is inherited from that of the polynomials Pjr(-). The representation of
Egs. (7)-(9) was already given by Kellerer (1989, Eq. (A1.6)).

The jumps of derivatives of g are related to those of f as follows:

Sg(2m+1)(c) - (_l)m+1 Z Sf(m)(a) , Sf(m)(b), (10)
{a€Df™),be D™ [b—a=c}

(Souchet, 1995). Moreover, since g is symmetric, namely g(h) = g(—h), h € R,
it follows that:

2.4 Examples and apparent paradoxes

An important consequence of the preceding theory is that the approximation of Var( @)
via the extension term, see Eq. (8), depends on the smoothness constant m of the
measurement function f. In most applications it was hitherto assumed that m = 0,
in which case:

5 T o+
Var(Q) ~ s '(0%). (12)

K. Kiéu and coworkers have shown that m = 0 only if f has at least one finite jump
(Fig. 1). In most real cases, however, one would expect f to be continuous and f(V
non-continuous with at least one finite jump, in which case m = 1, see Fig. 3, and:

T4

360

Var(@) £

Figure 1. Left: an ellipsoid truncated by a cap of thickness d. Right: the corresponding
measurement (section area) function. The horizontal axis is the sampling axis, and the vertical
axis is the area of the intersection between the object and a scanning plane (see left) normal
to the sampling axis.



ACTA STEREOL 1998; 17/3 297

1.0000; 9=0 1.0000, 4=003

0.1000 0.1000

0.0100 00100] ---
0.0010 0.0010 i,

| %
0.0001 0.0001 l

n =1 2 345 8 14 24 i = 2 345 8 14 24
T/d =66 33 22 13 82 47 27

d =0.06 d=0.10

1.0000 1.0000

0.10001 -

0.10007

Coeficient of variation of volume estimate

0.0100 0.0100 !
|

0.0010 0.0010 ! B
! <

0.0001 0.0001 i

n =t 2 345 8 14 24 n =1 2 345 8 14 24

Tid =32 16 11 65 4 23 1.3 Tid =19 95 47 24 14079

Figure 2. Oscillating curves: true coefficient of variation of the Cavalieri estimator of the
volume of the object in Fig. 1 from n sections. Note the change in trend from O(1/n*) for
T > Ty, (blue lines) to O(1/n?) for T < Ty, (red lines). See text, § 3.3.

Let us call object-m’ an object whose area function f has smoothness constant .
Note, however, that f, and hence m, may depend on the cutting direction. Fig. 1
represents an ellipsoid with a cap of height d removed. This truncated ellipsoid is an
object-0 because its area function has a finite jump corresponding to the planar face
of the object parallel to the sampling plane. Therefore, for this object the variance
approximation (12) should hold. What happens, then, if d is very small, so that the
object cannot be visually distinguished from a complete ellipsoid? Will then Eq. (12)
still be better than Eq. (13)? If the answer is ’yes’, then the situation will seem illogical
(i.e. two nearly indistinguishable objects require very different formulae), whereas, if
the answer is 'no’, then we would seem to face a theoretical contradiction.

A heuristic explanation is: for the truncated ellipsoid, Eq. (12) holds when the distance
T between sections is so small that they can ’feel’ that a cap is missing. For larger T,
however, the sections will see’ the object as if it was a complete ellipsoid (object-1),
and Eq. (13) will be the better one there. The ranges of T corresponding to each trend
vary with d, see Fig. 2. On the other hand, Fig. 4 illustrates the opposite situation, in
which the object-1 of Fig. 3 behaves as an object-0 when T is large (so that the sections
’see’ the slope of the area function as if it was a jump), and it behaves as an object-1
only when the sections are close enough to appreciate that the area function is really
continuous. Again, the corresponding ranges of T vary with the width d of the slope.
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Figure 3. Left: the 'mushroom’ object, composed of two sphere fragments of height 1 and
a cone fragment of height d joining them. Right: the corresponding measurement (section
area) function. The coordinate axes are defined as in Fig. 1.
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Figure 4. First three panels: the full curves represent the true coefficient of variation of the
Cavalieri estimator of the volume of the object in Fig. 3 from n sections. Note the change in
trend from O(1/n?) for T > Ty, (red lines), to O(1/n*) for T < T, (blue lines). Last panel: the
curve in the middle contributes to the Zitterbewegung, whereas the sum of other two, times
T4, is the approximation (18). See text, § 3.4.

3 EXACT TREATMENT OF THE APPARENT PARADOXES

3.1 The current approach

Gundersen et al. (1998) construct a few geometrical objects to illustrate ’paradoxes’ of
a kind similar to those described in the preceding subsection. They show that Eq. (8)
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predicts the trend of Var(Q) fairly well provided that a suitable value of m is used in
the corresponding range of T, and therefore that Eq. (12) is always satisfactory for an
object-0 for small enough 7, whereas Eq. (13) is always satisfactory for an object-1
for small enough 7, and similarly for other values of m.

3.2 Our approach

The current approach suffers from several shortcomings. First, for a given working
range of T corresponding to a small number 1 of sections, it is a priori not clear which
value of m should be plugged into Eq. (8) to get a good approximation of Var(@) in
that range. And second, Eq. (8) helps only when m is correctly chosen for a concrete
range of 7, but it is incapable of explaining the changes in trend of Var(@) over the
whole range of T.

Our approach starts from a generalized version of Eq. (7). Suppose that f is
(m, p)—piecewise smooth, with smoothness constant m — 0,1,...and p = 1,2, ...,
both known and fixed. For all N such that 2m +1 < N < 2m + p we may write:

Var(@) = Z (—1ybpe Z PL-+1,T(C)~Sg(A')(c)+o(Tf\’+1)

k=2m+1 c€Dgk)
N
- By ;
= (~1)f T 2 g o) (14)
k=2m+1 (k + 1)
+2 ) Pur(o) Sg“')(C)J +o(T7).
{c€Dg*)|e>0)

The preceding formula is a slight adaptation of one given by Souchet (1995, p. 49).

An important relation, proved in the Appendix, which generalizes Eq. (10), is:

SgP(e)= 3 >, (=15 a) - S£9 ), (k < 2m +p).
{i+j=k-1) {neDfm,/,eD/(J)lh_,,=,.}

: (15)
The idea is to build up a new extension term from the right hand side of Eq. (14).
The criteria to recruit terms from the second summation are as follows. Consider the
term Py 7(c) - Sg®(e).

* Criterion [1]. If T > ¢, then Phy;7(c) = Py41(c¢/T) is a Bernoulli polynomial
with one oscillation in (0 < ¢/T < 1). Thus, for each ¢ € Dg™ and ¢ > 0, the
term Pyi17(c) - Sg™(c) will be recruited into the extension term for the range
¢ < T < length(H).

* Criterion [2]. If 0 < T < ¢, then the polynomial Priir(e) = Prga(c/T — [c/T))
exhibits an oscillation about 0 between consecutive integer values of ¢/T', namely
an oscillation in each of the infinity many intervals:

C C
T - 7 =1 ) or
EHJH’J‘)’(J = )} (o
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Thus, for each ¢ € Dg*) and ¢ > 0, the term Pyyq7(c) - Sg™*)(c) will be recruited
into the Zitterbewegung (even if Sg*(c) is non-negligible) for the range 0 < T' < c.

For the examples of Figs. 1, 3 we are concerned only with m = 0,1, and therefore
we only have to retain terms up to N = 3 in Eq. (14). The corresponding variance
approximations are calculated next.

3.3 The truncated ellipsoid: an object-0 that may behave as object-1

The area function f of the object, see Fig. 1, is such that Df® = {2 — d}, whereas
DfM = Df® = {0,2 - d}.

Using Criterion [2], for 0 < T < 2 — d all terms of the form Pii17(2 —d) -
Sg'¥ (2 — d), (k= 1,2,3), will contribute to the Zitterbewegung only. On the other
hand, by Eq. (11) we have Sg‘?(0) = 0. Therefore, Eq. (14) yields the following
extension term:

var(Q) ~ =T g0 (0%) 4 s 6 (07). an

Note that the preceding expression is a combination of Egs. (12) and (13). Whenever
0 < T < Ty, where Ty depends on d, the first term in the right hand side prevails,
agreeing with the fact that the object is an object-0. However, when To<T<2-d,
the second term prevails: the object behaves as an object-1 there (Fig. 2). The thresh-
old Ty at which the trend changes is obtained by equating the two terms in the 1'i/ght
hand side of Eq. (17) and solving for T, namely: Ty = [—60 - g(”(OJr)/g(C‘)(O“‘)]1 ?,

3.4 The ’mushroom’: an object-1 that may behave as object-0

From the area function f of the object, see Fig. 3, we see that Df(" =@ for d > 0,
(because f is continuous if d > 0), whereas Df1 = Df? = {0,1,1 + d, 2 + d}.
By Criterion [2], for each ¢ € {d,1,14d,2+d} the terms Pyy17(c) - Sg'(c),
(k =1,2,3), contribute to the Zitterbewegung for 0 < T < c.

By Criterion [1], for T > d the terms Pjy17(d) - Sg')(d), (k = 1,2,3), contribute to
the extension term. However, using Eq. (15) we see that Sg'!(c) = Sg®(c) = 0 for
all ¢; therefore, Eq. (14) yields the following extension term for 7' > d:

var(é) ~ =T Py(0) - S¢g'®(0) — 2T Py(d/T) - Sg*¥(d). (18)

Using Eq. (15), and assuming that d < 1, we get Sg*¥(0) =~ 2[Sf"(1)}* and
Sg®(d) = —[SfM(1)]% so that Sg©®(0) ~ —25¢'¥(d) in this particular example
(Fig. 4, last panel). Therefore:

Var(@) ~ —2T' - [Py(d/T) — Py(0)] - Sg'¥(d)

= —%~5’g(3)(d)-(12-(T—(1)2, (T > d).

(19)
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When T'is *fairly larger’ than d, then Eq. (19) shows that Var((j) = O(TQ), (Fig. 4),
which explains why the object behaves as an object-0 when 7 is fairly larger than
the width d of the ’slope’ of the area function (Fig. 3). When T < d, then the
term Py 7(d) - Sg™®(d) contributes to the Zitterbewegung, and therefore the extension
term consists only of the first term in the right hand side of Eq. (18), so that

Var(Q) = O(T4), and the object behaves as an object-1 for small 7. When d = 0 we
have an object-0 for all 0 < T < 2, (Fig. 4, first panel).
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APPENDIX: PROOF OF EQ. (15)

We use the notation introduced in § 2 and § 3.2 throughout. We start from a variant
of Euler-MacLaurin’s formula given by Souchet (1995):

Q-Q=T) f(z+kT) - /f

kez
m+p—1 (Il)
— Z T:+1_ Z P1+1T CL—Z) f")(a)+o(T”’+1’).
i=m a€Df0)

The desired variance is Va.r(@) = E(@ — Q)?, the expectation being with respect to
the uniform random variable z. Thus:

m+p—1 2
Var(Q) = E[ Z (_I)ITH—l Z B—f—l,T(a _ Z) . Sf(i)(ﬂ,) + O(Tm-H;)
i=m a€Df(
2m+p-—1
= Z (—1)fTh+? Z Z E [BH,T(“ —z) Pir(b - Z)]
k=2m {i+j=k} {aeDf® beDfO}
-Sf(i)(a) . Sf(j)(b) + 0(T2m+p+1)‘
(1.2)
Further, similarly as in Kiéu (1997, pp. 45-46) we have:
T dz
E [Pi+l‘T(“ ~2) Pragz(b - Z)} = | Pugr(a—2) Piar(b-2)—
0 T (1.3)
=(=1)" Pyjyar(b—a),
which, substituted into the right hand side of Eq. (1.2) yields:
~ 2m—+p .
Var(Q) = Z (—nf i Z Z (-1)" - Piyar(b— a)
k=2m+1 {i+j=k=1} {a€DfO), beDf1) 14
-S'f(")(a) . Sf(j)(b) + 0(T2m+p+1)
On the other hand, setting N = 2m + p in Eq. (14) we obtain:
Var( TZg (kT) / z)dz
kez
2m+p (1.5)
— Z TI.-H Z PI.+1T Sg(l.')(c) + 0(T2m+p+1),
k=2m+1 c€Dy(k)

(Souchet, 1995), which, compared with Eq. (1.4) yields Eq. (15).



