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ABSTRACT

In this paper a general univariate morphological image representation scheme is proposed as
a theoretical basis for analyzing images. Here emphasis is given on the generation of a set of
non-overlapping segments of the image via repeated erosions and set transformations.

Notations: © : Erosion; @ : Dilation; O : Opening ; © : closing ;
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INTRODUCTION

In many image analysis applications there is a need to develop an image representation scheme
which contains serious important aspects of the image in a compressed form, In particular, by
developing the necessary mathematical tools, we are usually able to transform an image into a
set of simpler images which contain sufficient information about the shape, size, orientation and
geometry of the image under consideration. The representation scheme can then be effectively
used for the design of automated image analysis and computer vision schemes.

A good number of sources (Serra, 1982; Bronskill and Venetsanopoulas, 1988; Ghosh and
Chanda, 1993; Ghosh and Chanda, 1995; Ghosh, 1996; Kresh and Malah, 1994; Pitas and Venet-
sanopoulas, 1992) are available for various univariate morphological representation schemes. A
good shape representation scheme should have the following properties :

1. Tt should conform with our intuitive notions of 'simpler’ components of a ’complex’ picture.

2. It should have a well defined mathematical characterization.

3. It must be mathematically practicable i.e. it should be efficient and easy to use for
various image analysis and computer vision applications. This usually requires the representation
to be invariant under translation and scaling.

4. It should be information preserving i.e. it must be a unique mapping. For this, exact
reconstruction of the original object is possible.

5. It must be compact i.e. it should be non-redundant and provide high data compression.
Non redundant representation is defined as allowing a reconstruction of the original object,
however, removal of any one of its elements would violate this reconstruction.
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In this paper we present a general class of morphological univariate image representations and
we study its properties. A theory is developed for the morphological univariate representation
of images in a general form and to derive useful results and properties for its behaviour. First we
are dealing with the univariate notion of general information preserving image description. Then
the discussion is on general morphological non-information preserving univariate image analysis
descriptor, called the Gecstrum, and its relation with the Pecstrum. Several properties of good
image representation techniques are studied and conditions are derived for the invertibility,
translation invariance, and efficiency of the representation. The detailed proof is beyond the
scope of this paper and can be seen in Ghosh (1996).

REPRESENTATION SCHEME

This section deals with the theory which has developed for the univariate case in Shih and
Pu (1992). The only difference here is that we take a single shape of structuring element with
different sizes. The basis of the univariate image representation theory relies upon the generation
of a set of nonoverlapping segments of the image via repeated erosions and set transformations,
which in turn produces a decomposition that guarantees the exact reconstruction of the original
image. Let A be a set representing the original discrete and binary image, and B be the
structuring element.
A fundamental image decomposition procedure is to define the sets S,,(A4) by

S,(A)=(AenB)— (A6 (n+1)B) for n=0,1,...,N (1)
where '—’ stands for the set difference and
nB=B®B®....®B for n=0,1,...,N (2)
(1)t
n+1)times

N = maz{n; A6 nB # ¢}. So equation 2 means 0B =B, 1B=B® B, 2B =B ® B ® B and
S0 on.
From ( 2) it is easily seen that,

Ao (n+1)B=[AenB]oBCAenB for n=0,1,...,N (3)

By using ( 1) and ( 3) we get,

Snl(A) n Sn2(A) = d’ for nl 7é n2 (4)

Observe that,
Sw(A) C A for n=0,1,...,N (5)
U;’Y:osn(A) =4 (6)

therefore the image A is decomposed into a sequence {S,(A), n =0,1,...,N} of (N+1) non-
verlapping segments which guarantee exact reconstruction. Although the previous decompo-
sition satisfies our requirements, it does not result in a useful image representation, since no
redundant information is removed from the image A under consideration.

Let us define a sequence of general set transformations
{W,[e],n =0,1,... N} such that,

Ae(n+1)BC¥,[/Ae(n+1)B]C AonB (7)

forn=0,1,...,N
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for every image A C Z?, and if R, (A) are the subsets such that

R.(A)=A6nB-9,[Ad6 (n+ 1)B]forn=0,1,...,N (8)
Now clearly from ( 1), ( 7) and ( 8)

}{”(A) g SII(A) fOT n:()vl""aN (9)

The motivation for restriction (' 7) is to obtain a collection of disjoint subsets {R,(A), for
n=0,1,..., N} that satisfy the inequality ( 9). The sequence {R.(4), for n=0,1,..., N} is
also invertible, i.e., there exists a sequence of set transformations{F,,[-], for n=0,1,... , N}
such that

A= U:Y:OFH[RH]

Note the image decomposition in terms of {Ra(A4), forn=0,1,..., N} may provide an efficient
image representation scheme. Now from this a image representation R(A) of A is defined by

R(A) = {Ro(A), R1(A), ..., Ry(A)} (10)

We shall see in the following, R(A) is an important representation which decomposes image A
into (N+1) disjoint subsets (ie. {Ru(A), forn=0,1,... yN}). This set of subsets is proved to
contain sufficient information to uniquely represent the original image A. We present a theorem
which defines a restriction on the choices of the sequence {U,,(e), for n =0,1,..., N} as a direct
consequence of constraint ( 7) and we establish the invertibility of R(A) under this restriction.

Theorem 1
If the sequence of set transformations

{¥,[e],n=0,1,..., y N} satisfies (1), for every image A C Z2, then
AS(n+1)BC¥,[A6(n+1)B] C [[A6 (n+ 1)BJOB|©nB (11)
forn=0,1,...,N. Moreover,

R(A) is invertible and
A= B [R(A)] = UY.o(Ru(A) & nB) (12)

It is interesting to note that [[A © nB] O B]©nB C A© nB, hence it is a tighter upper bound
than A © nB.

In this section we shall restrict {W,[e],n =0,..., N} to satisfy ( 11), thereby allowing for
a representation R(A) which permits the exact reconstruction of A.

Some examples are as follows.

These are the importatnt special cases of the general morphological image representation.

Example 1 Generalised Morphological Skeleton (Maragos and Schaffer,1986) :
If
U, (X)=X®B for n=0,1,...,N.
then
R,(A)=AenB - [AenB]OB

Example -2 Reduced Morphological Skeleton (Maragos and Schaffer,1989) :
It
U, (X) =[X ® B]©nB for n= 0,1,..., N.

then
R.(A)=AonB - [[AenB] O Bl©nB
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Example -3
If
U, (X)=X& [BOnB] for n=0,1,...,N.

then
R,(A)=AonB-[[A6 (n+1)B] ® [BOnB]

We have already stated some of the choices for ¥, [e] and now we give some of the properties
of R(A).

First, we state that R(A) is a translation invariant transformation, when {¥[e],n = 0,1,...,N}
is a sequence of translation invariant mappings.

Proposition 1 :

If U, [A® {z}] = V,[A] & {2}, forn=0,1,..., N,
then,
R(A® {z}) = R(A) & {z}

for every z € Z% where Z is set of integers.

Proposition 2 :
a) Ry, (A) N Ry, (A) = ¢, for n1 # np

and
b)R.(A) C A for n=0,1,...,N.

Il

Proposition 2 is the resulting morphological image representation subsets R,(A), for n
0,1,..., NV are disjoint and anti-extensive.

GECSTRUM

The introduction of G-spectrum by Shih and Pu (1992) as a useful shape description tool, based
on the theory developed by Gautias and Schonfeld (1991), is primarily for its less redundancy
property compared to other existing shape-size descriptors. From this concept we develop the
Gecstrum, based on the morphological erosion and other set transformations, as a measurement
for quantifying the geometric shape of discrete multidimensional images with the help of a single
set of structuring elements of the same shape but different sizes.

The formal definition of the Gecstrum is given by

Definition 1 :
Gecstrum = {Go(z), G1(z),...,.,Gn(z)} (13)
where

Card(A © nB)—Card(¥,[AS(n + 1)B])
Card (A)

Gn(A) = for n=0,1,...,N (14)

By the suitable choice of the sequence of transformations {¥,[e],n = 0,1,..., N} that satisfy
()
AoenB-V,[Ao(n+1)B] C(AonB)-(A©(n+1)B)
' for n=0,1,2,...,N. (15)
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Hence

cardfAonB - T,[Ad6 (n+ 1)B]]
< card[(AenB)—(4A6 (n+1)B))
for n=0,1,2,...,N. (16)

According to ( 14) and( 16), Gestrum is less redundant than %’%AL); ie.

card[A © nB]—card[A © (n + 1)B] _ R,(4)
Ga(4) < card(A)  card(4)

(17)
It has been shown that the upper bound of the set transformations {W,,(4)} which satisfy
equation (7) is A ©nB O BOnB. Also equation (18) is satisfied by

AQkB=UY

w=k[(A©nB-VY[A© (n+1)B]) ®nB (18)
The difference between two successive openings is

(AOnB — AO(n+1)B 2 (A©nB - ¥,[A6 (n+1)B]) (19)
< Pu(4) > G, (A). (20)
where P, is the nth element of the Pecstrum. Hence the Gecstrum has less redundancy than

the Pecstrum.

Properties

The properties of the Geestrum are now presented and discussed in this subsection.

Proposition 8
For a given image A, each element of the Gecstrum is a positive valued function. That is

Gu(A)>0forn=0,1,...,.N (21)
Proof: From equation (7) we know that
A6nB 2 U[A6 (n+1)B
By applying the cardinality to both sides yields
card[A © nB] > card[¥[A © (n +1)B))
Because card(A) >, we have

card[A © nB]—card[¥[A © (n + 1)B]] -
card(A) -

According to equation (14), the result obtained. =

As stated in proposition 3, the Gecstrum is a set of positive values which gives the quantative
feature of an image based upon its geometry. The redundant rate function (RRT) (discussed
in the next proposition) is an indicator of how much redundant information can be reduced by
using the Gecstrum. The RRT can also be used in the matching procedure in object recognition.

Proposition 4
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With a compact region of support, the summation of the Geestrum is equal to one minus
the redundant reduction rate (RRT). That is

i Gn(A) =1 - RRT(A). (22)
n=0
N

where RRT(A) — m S Card (U[A© (n+1)B])—Card (A6 (n+ 1)B).  (23)
n=0

The summation of the Gecstrum is used to determine the degree of redundancy for an image
representation. The smaller the value of zf)’:o G (A) the more redundant information is removed
from the image. For an image A, the RRT(A) will be varied with respect to the different
set transformations. By employing the above concept, we are able to select a suitable set
transformation which leads to the best performance on image coding.

Proposition 5
If U,[A® {z)] = U.[A] ® {z} for n=0,1,...,N then the Gecstrum is translation invariant
ie.
Gu(A® {z}) = Gu(A) for n=0,1,...,N (24)
where z is any integer.
Proof:

Card((A ® {z}) 6nB)-Card(Y[(A® {z}) © (n + 1) B])
Card (A(®{z}))
Card((A©nB) ® {z})—Card(¥[(A© (n+1)B]) ® {z})
Card (A(®{z}))
Card(A © nB)—Card(V[AS(n + 1) B])
Card (4)
= Gu(A) m

GuA®{z}) =

The translation invariance property is an essential criterion for a good shape description method.
The next proposition is that normalised Gecstrum is a scale invariant shape descriptor.

Proposition 6
The Gecestrum is scaling invariant if the set A is normalised. That is

Gu(M(EA) = Gu(M(A)) for n=0,1,2,...,N (25)

where ¢ is an unknown scaling factor and M (A) a normalization function which is defined as

T

M) = Gl

(26)
where 7 is a pre-defined value.

From Proposition 4, if we perform the normalization (note that Card (M (A)) = 7) on the images
with various scaling factors £, the Gecstrums of £A and A are the same. This implies that the
normalisation according to a pre-defined value 7 can produce the scaling invariant version of the
Gecstrum.

Proposition 7
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The first k elements of the Gecstrum are Zeros,
Gy (A)=0 for n=0,1,2,..., k-1, (27)

iff the following equations are satisfied :

AQkKB = A4 (28)
V,[Ao(n+1)B] = (Ao nB) O BOnB
for n=0,1,...,k—1. (29)

If we can find a sequence of set nB, for n=0,1,..., N which satisfy equations ( 28) and
( 29), the recognition problem can be simplified by matching only N — k + 1 elements of the
Gecstrum.

Proposition 8
If the set of structuring elements is chosen to be isotropic, the Gecstrum can be regarded as
rotation invariant,

There is a relation between Pecstrum and Gecestrum which we try to reveal in the next
proposition.

Proposition 9
There exists some n such that

Gn(A)=0 (30)
iff the following are satisfied
V,[A© (n+1)B] = (AcnB)OB ©nB (31)
and
P,(A) =o0. (32)

Proposition 9 tells us that if the transformation U,,[e] is constrained by equation ( 31) and the
nth element of the pattern spectrum is equal to zero, then the nth element of the Gecstrum
will be equal to zero or vice versa.

CONCLUSION

This paper investigate a general univariate shape descriptor with the help of mathematical
morphology (Serra, 1982). The term ‘univariate’ emphasises the generation of different non-
overlapping image shapes from the original image at different scales with the help of different
sized structuring elements generated from a single shape image kernel. The bivariate case is
under study.

ACKNOWLEDGEMENT

The author acknowledges Dr. Avijit Kar and Dr. Prakash Ch. Mali for their suggestion and
also like to acknowledge UGC for financial support during the research tenure.



282 GHOSH P: GENERAL UNIVARIATE SHAPE DESCRIPTORS

REFERENCES

Bronskill J.F., Venetsanopoulas A.N. Multidimensional shape description and
recognition in mathematical morphology, Journal of Intelligent and Robotic System, 1988,
1: 117-143.

Gautias J., Schonfeld D. Morphological representation of discrete and binary images,
IEEE Trans. on Signal Processing, June 1991, 39: 1369-1379.

Ghosh P., Chanda B. A fast algorithm for sequential machines to compute pattern
spectrum via chess-board distance transform, Pattern Recognition Letters, Jan 1995,
16: 49-58.

Ghosh P., Chanda B. Two fast algorithms for sequential machine to compute pattern
spectrum with morpholological concept, 3rd International Conference on Advances
in Pattern Recognition and Digital Techniques,28-31 Dec. 1993, Calcutta, India.

Ghosh P. Efficient computation and general theory of pattern spectrum-Morphological
analysis of multiscale shape description , 1996 Ph.D dissertation, Jadavpur University,
Calcutta, India.

Kresch R., Malah D. Morphological reduction of skeleton redundancy, Signal
Processing,1994, 38: 143-151.

Pitas I., Venetsanapoulous A.N. Morphological shape representation, Pattern
Recognition, 1992, 25: 555-565.

Maragos P., Schaffer R.N. Morphological skeleton representation and coding of binary
images, IEEE Trans. Acoust. Speech Signal Processing, 1986, 34: 1228-1244.

Maragos P., Schaffer R.N. Pattern Spectrum and Multiscale shape representation, IEEE
Trans. on Pattern Analysis and Machine Intelligence, 1989, 11: 701-715.

Serra J. Image Analysis and Mathematical morpholog Vol-1, New York: Academic,
1982.

Shih F.Y., Pu C.C. Morphological Shape description using geometric spectrum on
multidimensional binary images, Pattern Recognition, 1992, 25: 921-927.

Presented at Workshop on Image Processing and Analysis, Dec. 27-28, 1996, Visakhapatnam, India.



