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ABSTRACT

The aim of this work is to found a theory of crystal structure on the notions not of
length and angle, but of number, the fundamental phenomenon involved being the
patterns produced by X-rays falling on matter in the solid, or crystalline state. It is
shown that some alloys of transition metals are a source of patterns complex and
varied enough to enable gaps in their enumeration to be exposed by the rudiments
of such a theory (Aboav, 1997, 1998).
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INTRODUCTION

In Parts 1 & 2 (Aboav, 1997, 1998) it was shown how the topological properties of
some inclusion hydrates of the 'dodecahedral series' could be classified in terms of
the solutions of a simple Diophantine equation, and the result used to predict the
existence of further compounds of the same type. These properties are summarized
in Table 1, which shows for five of the hydrates the number of 16—, 15—, 14—, and
12-hedra (cols.2 through 5); Ny, the number of vertices (col.6); N3, the number of
polyhedra (col.7) in a unit cell of their crystal structure; and (col.8) the number
29N; - 5Ny, ng and n, (cols.9 &10) are Ny and Ny made relatively prime by the

removal of their common factors.

Table 1. Topological properties of some inclusion hydrates.

hydrate 16 15 14 12 Np N, (29N,-5N,) Ny Ny
chlorine 6 2 46 8 2 23 4
chlorofrom 8 16 136 24 16 17 3
alkyl onium salt ... 4 4 6 80 14 6 40 7
bromine tetr. 4 16 10 172 30 10 86 15
bromine ortho. 4 4 4 14 148 26 14 74 13

The table shows that for each of the five unit cells listed:

(i) the number of 12-hedra is equal to 29N, - 5N,, and
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(ii) the numbers of 16—, 15—, 14—, & 12-hedra are multiples, or sums of multiples
of their combinations 1|0|0|2, 0]|2]|2|3, and o0|0|3]1, thus:

chlorine 2x(0]0|3]1), chloroform 8x(1]0]0|2), alkyl onium salt 2x(0]|2]|2]3),
bromine (tetr.) 4x(0|0|3|1) + 2x(0|2]2|3), & bromine (orth.) 2x(0]2]|2|3) +
ax(1|olo]2).

These two findings are, however, not independent; for, if the multiples of
1|o|o]2, o|2|2]3, and o|o|3|1 are integers i, j, and k, respectively, the
number ;,N; of 12-hedra in a unit cell is given by

12Ny = 20 + 3j + k ; (1)
and, since 16—, 15—, 14—, and 12-hedra possess 28, 26, 24, and 20 vertices —-—-

or, if they are so placed that each vertex is shared by four contiguous polyhedra,
7, 6%, 6, and 5 vertices, respectively ——- the number N, of vertices of such a

cell is given by
Ny = 17i + 40j + 23k (2)

and the number N of its constituent polyhedra by

Ny = 3i+7j+4k; (3)
from which it follows that

20N, - 5N, = 2i + 3j + k
= 4Nz . (4)

This shows that, if Ny and Ny are known, the number of 12-hedra in a unit cell
and consequently the total number (Ny — {,N3) of its remaining polyhedra are also
known. But the partition of the latter into 16—, 15—, and 14-hedra is not deducible

from N, and N,, since the operation (1|-2]1|0) --- i.e. the replacement of two
15-hedra by a 16-hedron and a 14-hedron --- leaves N, and N, invariant and,
since

(1]-2|1]o) = (1]o]ol2) - (o]2]|2|3) + (o|o]3]|1), (5)

allows the numbers of different polyhedra, after the operation, to be expressible as
multiples, or sums of multiples of the same combinations as before.

The above rule (4) does not, however, hold generally. It is a feature of 4-
connected honeycombs whose polyhedral cells have pentagonal and non-adjacent
hexagonal faces only; and many inclusion hydrates in particular (Jeffrey, 1982)
have structures that do not obey it.

But there are compounds, among them alloys of the transition metals, whose
structure, though differing chemically from that of the hydrates, is nevertheless
governed by that rule; and the object of the investigation now to be described is
to show how those compounds, too, can be classified and their existence predicted
by means of the above-mentioned Diophantine equation.
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THE DIOPHANTINE EQUATION 23x = 3Py + z .

It has already been shown (Aboav, 1998) that the quantities Ny and N5, and hence
ng and ng, of Table 1 are proportional to the roots of a Diophantine equation:

28y = 3Py + 2 (6)
where a and b are positive integers, and x , y, and z odd primes or unity,
with  z  positive or negative. To obtain agreement with experiment certain
restrictions on the values of x, y, and z had to be made, viz:

(i) x,y < 100,

(ii) z/28&x < 1/100 ;

but the experimental facts now to be investigated suggest a change should be
made both in the composition and in the limits of x, y, z.

As regards their composition each of these numbers was assumed to be prime
(Aboav, 1997); but it will now be assumed that:

(a) z is composite,

(b) one of the two numbers x y is odd prime, while the other may be odd prime
or the product of two odd primes, of which one may not exceed 7.

This gives rise to five equations to be solved for x and vy :

28 = 3by + 2z
285p = 3by + z
(7)
22x = 359 + z
2a7p = 3y + 2z
(8)
28y = 379 + z

where p and g are odd primes. So that they may be more easily recognized,
composite numbers are shown underlined.

As regards the limits imposed on x and y it will now be assumed that:
(iiif) x < 240 ; y < 60.

Since z is assumed composite there is no longer need to refer to its value
explicitly; so that restriction (ii) may be expressed as 1 - 3by/2ax < 1/100, or as

(iv) 1 - 35n4/2Tn; < 1/100

(Aboav, 1997, 1998); and the solutions of Eq.(6) which were formerly denoted by
(ab){x y z} may be written simply (a b]{x y}.
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The fraction (1 - 35n3/27n0) will henceforth be referred to as the comma, and
denoted by the Greek letter k:

K = 1 - 3%n,/27n, (9)
so that restriction (iv) can be written
(v) K < 1/100

For greater clarity the comma may sometimes here be expressed as the nearest
vulgar fraction with unity as numerator, as in Table 5A below.

24 solutions to Eq.(6) subject to these new conditions are shown in Table 2, which
contains many of the solutions listed in Part 2 (Aboav 1998) as well as some
further ones. In some cases more than one solution is shown for a given [a b].

Table 2. Solutions of Eq.(6) subject to restrictions (iii) and (iv)
b = 4 b = 5 b = 6 b = 7

a {x v} {x v} {x v} {x v}

5 {43 17} {53 7} {23 1} -—

6 {29 23} {19 s} {149 13} {103 3}

7 {7 11} {59 31} {17 3} -
-— {89 a7} {97 17} -—
—— {101 53} {131 23} -—
8 {13 a1} {41 a3} {37 13} {43 5}
-— -— {151 53} -
9 {3 19} {11 23} {67 a7} {47 11}
10 -— -— {5 7} -—

13 solutions of Eq.(7) and 7 solutions of Eq.(8) are shown in Tables 3 & 4,
respectively. In Tables (2), (3) & (4) numbers that describe a known crystal
structure (v. infra) are shown in bold type.

These tables, to which more solutions subject to the same restrictions can be
added, are not meant to be complete. The 44 solutions here chosen are gathered
together in Table 5A, in which are listed, after a serial number (col.1) a
solution (col.2) and its corresponding values of ny and n; (cols.3 & 4). Column 5
lists the comma, K ; cols.6 & 7, the numbers 60(1 + ny/ny) and 2(1 + ny/ny) to 3

decimal places; and col.9, the integer 29n;-5n,.
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Table 3. Solutions of Eq.(7) subject to restrictions (iii) and (iv)
b = 5 b = 6 b = 7 b =8 b = 9

a {x y} {x vy} {x vy} {x vy} {x vy}

5 - -—- {5.41 3} - -—-
6 —_— ———— —_— —_— —_—
7 {5.11 20} {5.47 41} -— {5.31 3} -—=
{67 5.7} -— - -— -—
8 {57 37} {71 55} {s5.20 17}  -—- -—
-—- {157 511} - - -

9 {s15.13} -—- {107 5.5} - {5.23 3}

10 {13 511} --- -— _— —

Table 4. Solutions of Eq.(8) subject to restrictions (iii) and (iv)
b = 4 b =5 b=2s6 b =7 b =28

a {x v} {x vy} {x y} {x y} {x vy}

s - f{zas 3} - e

8 -— {73 7.11} -——- -—= {7.11 3}
9 - - -— {7149 31} -

10 -— -— -— {1.7 23} ——-

THE CRYSTAL: THE PICTURES OF HAUY (1784), AND OF FEDOROV (1890).

The numbers listed in Table 5A, which are solutions of a Diophantine equation or
numbers derived from them, are dimensionless and hence scale-free. It is
proposed next to compare them with some other numbers which, since they
depend on a physical process and necessitate measurements of length and angle,
are scale-dependent.




278 ABOAYV DA: CRYSTAL STRUCTURE - PART 3

Table 5A. Solutions to Egs (6),(7), & (8), and some related numbers.

No. (a b){x y} ny na K 60(l+ny/ng) 2(1l+ng/n,y) 29n45—5n,
1 (5 6){23 1} 23 4 1/104 70-435 13-500 1
2 (7 5){67 5.7} 201 35 1/121 70-448 13-486 10
3 (7 8){5.31 3} 155 27 1/126 70-452 13-481 8
4 (9 5){11 23} 132 23 1/131 70-455 13-478 7
5 (8 7){43 5} 86 15 17151 70-465 13-466 5

" " " " 1/151 70-465 13-466 5
6 (7 6){5.47 41} 235 41 1/157 70-468 13-463 14
7 (6 6){149 13} 149 26 1/162 70-470 13-462 9
8 (7 4){7 11} 63 11 1/179 70-476 13-455 4
9 (9 5){31 5.13} 372 65 1/206 70-484 13-446 25

10 (6 7){103 3} 103 18 1/213 70-485 13-444 7

11 (8 5){a1 43} 246 43 1/223 70-488 13-442 17

12 (9 7){7.19 31} 532 93 1/228 70-489 13-441 37

13 (7 5){101 53} 303 53 1/264 70-495 13-434 22

14 (10 6){5 7} 40 7 1/301 70-500 13-428 3

" " " " 1/301 70-500 13-428 3
" " " " 1/301 70-500 13-428 3

15 (6 6){7.31 19} 217 38 1/375 70-507 13-421 17

16 (7 5){59 31} 177 31 1/397 70-508 13419 14

17 (8 6){157 5.11} 314 55 1/414 70-510 13-418 25

18 (8 4){13 a1} 234 41 1/476 70-513 13-415 19

19 (9 7){107 5.5} 428 75 1/503 70-514 13-413 35

20 (7 6){97 17} 97 17 1/540 70-515 13-412 8

21 (8 8){7.11 3} 154 27 1/680 70-519 13.407 13

22 (9 6){67 47} 268 47 1/837 70-522 13-404 23

23 (6 5){19 5} 57 .10 1/1216 70-526 13-400 5

24 (8 6){151 53} 302 53 1/2035 70-530 13-396 27

25 (9 7){47 11} 188 33 1/3438 70-532 13-394 17

26 (7 6){131 23} 131 23 1/16,768 70-534 13-391 12

217 (5 7){5.41 3} 205 36 -1/6562 70-537 13-389 19

28 (7 4){31 7.7} 279 49 -1/3968 70-538 13-388 26

29 (8 6){37 13} 74 13 -1/1894 70-540 13-385 7

" " " " -1/1894 70-540 13-385 7
" " " " -1/1894 70-540 13-385 7
" " " " -1/1894 70-540 13-385 7

30 (5 4){43 17} 387 68 -1/1376 70-543 13-382 37

31 (7 5){5.11 29} 165 29 -1/1006 70-546 13-379 16

32 (8 5){73 7.11} 438 77 -1/813 70-548 13-377 43

33 (3 5){7.13 3} 91 16 -1/728 70-549 13-375 9

34 (8 7){5.29 17} 290 51 -1/629 70-552 13-373 29

35 (9 4){3 19} 108 19 -1/512 70-556 13-368 11

36 (10 7){7.7 23} 392 69 -1/401 70-561 - 13-362 41

37 (7 5){89 47} 267 47 -1/393 70-562 13-362 28

38 (8 6){71 5.5} 142 25 -1/371 70-563 13-360 15

39 (9 9){5.23 3} 460 81 -1/348 70-565 13-358 49

40 (5 5){53 7} 159 28 -1/339 70-566 13-357 17

41 (8 5){5.7 37} 210 37 -1/289 70-571 13-351 23

42 (6 4){29 23} 261 46 -1/265 70-575 13-348 29

43 (10 5){13 5.11} 312 55 -1/251 70-577 13-345 35

44 (7 6){17 3} 17 3  -1/198 70-588 13-333 2
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Table 5B. Crystal structure of some 't.c.p.' alloys (Shoemaker & Shoemaker, 1986).

No. Compound a(d) b(A) c(A) B(°) N <B> <CN> Xcalc
1 Cr3Si (4-564) 8 70-435 13-500 1-00
2
3
4
5 CrygFegy (8:800 4-544) 30 70-465 13-466 4-98

H complex (4:-5 175 4-5) 30 70-465 13-466 4-98
6 K complex 82 13-46
7 F complex 52 13-46
8 J complex 22 13-45
9

10

11

12 Mng; .58i;g.5(16-992 28-63 4-656) 186 70-489 13-441 37-11

13

14 ZryAly (5-433 5-390) 7 70-500 13-428 3-00
Mo;,CrjgNiyjg (9070 16-983 4-752) 56 70-500 13-428 6-04

MoNi (9108 9-108 8:-852) 56 70-500 13-428 6-04

15

16

17 Mnqg;Fe,Sigg(13-362 11-645 8-734 90:-5)220 70-510 13-418 25-14

18

19

20

21

22

23

24 Mo3CrygCogy (10-903 19-342) 159 70-530 13-396 26:93

25

26

27

28

29 MogCoq (4-762 25-615) 39 70-540 13-385 6-96

K7Csg (9-078 32-950) 26 70-540 13-385 6-96
Wg(Fe,Si)qg (9283 7-817 4-755) 26 70-540 13-385 6-96
Nb,gNi3gAl g (9303 16-266 4-933) 52 70-540 13-385 6-96

30

31

32

33

34

35 V41NizeSiy3(13:462 23-381 8-940 100-3)228 70:-556 13-369 10-94

36

37

38 Vy(CoSi)g (17-17 4-66 7-55 99-2) 50 70-563 13-360 14-92

39 Mg3;(Zn,Al)3g (14-16) 162 70-565 13-358 48-75

40

41 MnygCoypSiyg (15-42 12:3 4:-74) 74 70-571 13-351 22-90

42

43 Mg,Zng (25-96 5-24 14-28 102-5) 110 70-577 13.345 34-89

44 MgZn,(MgCu,])(5-16(7-08) 8-50) 12(24) 70-588 13-333 2-00
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The physical process referred to is the scattering of X-rays by matter in the
crystalline state. The characteristic pattern of spots this produces on a photo-
graphic plate is thought of as originating in a microscopic structure possessed by
the crystal. This postulated structure is pictured macroscopically in at least two
ways. In the first way, associated with the name of Hally (1784), the crystal is
pictured as a regular array of particles, or 'atoms', located in a space of three
dimensions: in the second, that of Fedorov (1890), the space is pictured as
divided into contiguous, congruent polyhedral regions, or stereohedra. The two
representations are equivalent, the one being the 'dual' of the other; but Fedorov's
has for us the advantage that, in emphasizing a topological feature of crystal
structure, it facilitates the eventual passage to an algebraic theory.

Fedorov's stereohedron is topologically equivalent to the Voronoi polyhedron
(Okabe et al., 1992) generated by a point at its centre; and in some cases, as in
the truncated octahedron of Fig.1, may also be congruent to it. Hence, where only
a topological feature of a crystal is in question, Voronoi's figure can be used in
place of Fedorov's. The number of faces of the Voronoi polyhedron is also known
as the coordination number, CN, of the atom at its centre.

Figure 1 shows part of the structure of a body-centred cubic crystal pictured in
each of the above two ways. The black dots represent the sites of Hally's atoms;
while the stereohedron of Fedorov, or Voronoi polyhedron, is shown as a truncated
octahedron surrounding an atom at the centre of the cube.

Fig.1. Structure of body-
centred cubic crystal.

In this case the stereohedra, like the polyhedral compartments of the crystal
structures so far investigated (Aboav, 1997), form a 4-connected honeycomb; but
in other structures, like for example the face-centred cubic lattice, they may be
n-connected, with n > 4. That the algebraic theory now put forward may
nevertheless be valid for these cases, too, may be seen from the following
considerations.

Figure 2a shows a Voronoi diagram in two dimensions only: it is a periodic
tessellation of 3-connected Voronoi polygons whose generating points, here
represented as black dots, form a 'dual' tessellation of parallelograms. With the
angle B of a parallelogram equal to 75°, as in the figure, the side AB of the
Voronoi polygon is roughly 4mm long; and with B increased to 85° (Fig.2b) it
diminishes to about 1mm.

As B approaches a rightangle there comes a stage where AB can no longer be
distinguished from a point, and 4 instead of 3 sides of the Voronoi polygon, which
now looks like a rectangle, appear to meet at the vertex A. (Fig.2c). The figure
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may then be regarded either as a 4-connected, or as a 'degenerate' 3—connected
tessellation of polygons. A degenerate figure often appears when its generating
points are regularly spaced (Okabe et al., 1992), the concepts of 'symmetry' and
'degeneracy' going hand in hand.

Since the notion of degeneracy applies equally to honeycombs of polyhedra in a
space of 3 dimensions, every such honeycomb can in principle be regarded as 4-
connected (Okabe et al., 1992), thus enabling the proposed algebraic theory of
crystal structure (Aboav, 1997), which invokes a geometrical property of 4-
connected honeycombs, to be applied more generally.

¢,A,_
RaEs

Fig.2. Periodic tessellations of Voronoi polygons in 2 dimensions.

We end this section by indicating briefly how the rudiments of such a theory may
predict for some transition metals the topological structure of a number of alloys
as yet unidentified.

'TETRAHEDRALLY CLOSE-PACKED' ALLOYS

The alloys of some transition metals, the so called 'tetrahedrally close-packed',
or t.c.p. alloys, display a crystal structure of wide variety and complexity, which
as we have seen may be described in terms either of the neighbouring atoms of a
central atom, or of the space-filling packing of polyhedra. Shoemaker and
Shoemaker (1986), used both these representations to express, for some 20 alloys
of this type, metrical and topological features of their structure, of which some
are reproduced in Table 5B

In col.1 of that table is shown an ordinal number, to help align its entries with
those of Table 5A. The formula of each alloy is given in col.2, and its lattice
constants in cols.3 through 6. N, the number of Voronoi polyhedra in its unit cell,
is shown in col.7; <@>, the average dihedral angle of the tetrahedral interstices
formed by the atoms of the alloy, in col.8; and <CN>, the average coordination
number of those atoms, in col.9. An approximate value, X_.,,.. of the number of
dodecahedral Voronoi polyhedra per unit cell, deduced by the above authors from
the values of <©>, is given in col.10; and equivalent data (Rivier & Aste, 1996)
for 3 alloys discovered after the publication of their results are added to the table,
in italics, at positions 6, 7, and 8.

The table shows, first, that for each of its 20 values of <CN> there is a value of
2(1 + ny/ny) in Table 5A to equal it; and that, if such pairs of numbers are placed

in alignment, <®> is seen to equal the corresponding value of 60(1 + Ny/ng);
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N, to equal a small integral multiple of the corresponding value of n,; and the

nearest whole number to x_,,., to equal the corresponding value of 29n;-5n;

secondly that, when the entries of the tables are aligned in that way, gaps appear
in those of Table 5B, that is, there are entries in Table 5A to which there is
nothing to correspond in Table 5B;

and thirdly that, if to these alloys are added the above three subsequently
identified ones, they are found to fill gaps in Table 5B, that is, the same kind of
correspondence is found to exist between their data and numbers in Table 5A as
was found for the alloys of Shoemaker & Shoemaker.

This last fact indicates that the most recent enumeration of tetrahedrally close-
packed alloys (Rivier & Aste, 1996) may not be complete, and that further
compounds of that type may eventually be found to fill some, if not all of the
remaining gaps in Table 5B. Eq.(6) leads to values of N, <@>, and <CN> and ,,N,

(a muitiple of the nearest integer to x_,;.) that indicate structures to be

expected, of which the most likely to turn up are those with the smallest values of
ns: Nos.10, 20, 23, and 33 of Tables 5A & B.

Shoemaker & Shoemaker aiso determined the partition of N into the numbers of
constituent 16—, 15-, 14—, and 12-hedra (not shown here); but Table 5A has
nothing to correspond to this partition since, as we have seen, its solutions furnish
the numbers N, and N; (and hence ny and ny) only; nor has it any numbers to

correspond to the crystal's symmetry, or to its lattice constants (Table 5B). These
omissions indicate that the proposed algebraic theory is, as yet, powerless to
describe some of the most characteristic properties of a crystal.

Nevertheless, since the theory, even as it now stands, enables some crystals to be
classified and topological features of their structure to be quantitatively predicted,
it cannot be dismissed as a useless numerical exercise. On the contrary, if as a
result of this investigation a tetrahedrally close-packed alloy of the transition
metals is found to possess one of the predicted structures, there will be all the
more reason to seek, as Einstein envisaged (Aboav, 1997) and as is here
attempted, a description of Nature grounded on a purely numerical axiomatic
framework.
(to be continued)
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