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ABSTRACT

Spatial Voronoi tessellations generated by cluster fields of the Neyman-Scott type
and the sectional 2D induced tessellations were simulated. The effect of number and
arrangement of points forming the cluster and of the cluster size on several tessellation
characteristics is explained using the concept of inner and outer cells filling the cluster
core and the space between clusters, respectively.
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INTRODUCTION

Random tessellations are an important tool of the examinations of objects scattered
in the space. The investigated object is often a natural planar or spatial tessellation,
as in the case of districts of administrations, thin monolayers of bubbles or biological
cells and, in particular, in the case of polycrystalline grains. Also planar or spatial
point patterns are examined and in order to describe or to optimize their arrangement,
tessellations induced by them are analyzed and compared with theoretical models.

Clustering of particles or space-filling cells is a wide-spread phenomenon connected
with local inhomogeneities of the embedding natural space. The present paper is
devoted to the cluster fields of the Neyman-Scott type which are constructed as fol-
lows. First a pattern of points called the parents is chosen; the usual choice is the
stationary Poisson point process (PPP) of intensity Ap. Further, a random cluster
Z ={z1,...,2n} of points called the daughters is defined by prescribing the distribu-
tion law of their number m and of their spatial arrangement. Mutually independent
clusters are then implanted in the parent points and the union of daughters consti-
tutes the cluster field; its intensity is A = N),. Such cluster fields can also be called
Boolean as their construction is similar to the generation of Boolean model with the
grains being random point clusters. Two cases of the daughter arrangement will be
considered here; the daughters are scattered uniformly at random either within a ball
of diameter D - globular (G) clusters, or, at the sphere of diameter D - spherical (S)
clusters. Beside the ordinary choice, namely m is Poisson distributed with the mean
value N - Poisson (P) clusters, also the case of the fixed daughter number m = NV
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- binomial (B) clusters - will be considered in the case of globular clusters. Poisson
clusters are a mixture of clusters with various m = 0,1, ... and the fraction of void
clusters is exp(—N). At N = 1, the binomial cluster field is the parent PPP, whereas
the Poisson cluster field approaches even at D — 0 an independently thinned PPP of
intensity A,(1 — exp(—N)). Several properties (K-function, pair correlation function,
nearest nelghbour and spherical distance distribution functions) of these cluster fields
can be calculated theoretically (Stoyan et al, 1995; Rataj and Saxl, 1997). Unfortu-
nately, data concerning 3D cluster field tessellations are rather scarce; they are missing
in the monograph by Okabe et al. (1992), examples of Poisson globular cluster field
(PGCEF, called also Matérn cluster field) are in Lorz (1990), Lorz and Hahn (1993)
and Hahn and Lorz (1994). Only few selected cases have been analysed there in order
to compare them with the Poisson-Voronoi tessellation (PVT).

PRELIMINARY CONSIDERATIONS

The tessellation properties can be divided according to their behaviour with respect
to the changes in the intensity of the underlying point process A. The size char-
acteristics are homogeneous functions of degree k,k > 0, of X - f(a)) = aff(\);

k=-1, —§ and — = for the cell volume v, cell surface area s and for cell perimeter
p as well as the mean cell breadth w, respectively. Consequently, the unit density
of the daughter process A is assumed in all numerical results that follow and a di-
mensionless cluster size parameter is introduced, namely the ratio ¢ = D/(Epp),

where Ep, = 0.55), /3 is the mean nearest neighbour distance of parents. On
the other hand, k¥ = 0 for the shape characteristics like mean dihedral angle ©,
randomly selected dihedral angle 0 number of cell faces n and cell shape factors
g = 6u/7/s3, f = 6v/(7w3), (¢ = f =1 for a ball).

When the cluster size is very small and the mean number N is also small, the cell of
the tessellation induced by parents either vanishes (m = 0) or is divided into m > 0
subcells of a comparable size with a nearly unchanged outer common boundary of
the parent cell. The shrinkage of clusters below some size does not influence this
division substantially. Consequently, the average tessellation characteristics change
only slowly with D decreasing further below a certain value. At the same time,
several new faces are created and, consequently, the cell surface area as well as cell
perimeter increase. Simultaneously, the original parent cells with the average value of
Ew = 1.458 are flattened to a certain degree and therefore the average mean breadth
Ew also increases. The distributions of size properties are changed and the variances
of properties increase in comparison with the parent PVT but the modes shift only
slightly because of the normalization to A = 1.

When the cluster size is still small and the mean number N is higher, small inner cells
can develop with the neighbours being generated by daughters of the same cluster;
their fraction ¢ will be an increasing function of N. Their mean volume will be
roughly proportional to the reciprocal value of the local intensity in the cluster Aq =
6N/(mD3) = 11.23Ac¢™3 = a\. The higher is N the better will the distribution of size
characteristics of these inner cluster cells imitate the distribution of the properties of
the parent PVT cells. The daughters lying near the boundary of the cluster embedding
ball will generate outer cells similar to those created by clusters with a small mean
daughter number N. Consequently, the resulting distributions of the cell size property
M will be bimodal. The primary mode will roughly correspond to the PVT of the
intensity (1 — ¢)\ and with increasing N shifts from the position of zpy7(A; M) to
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higher values; the height of the primary maximum decreases. The secondary mode
will be a*/3z py(\; M), where k is the degree of the homogeneity of the property M,
hence shifted very far to the left from xpyp(A; M) if ¢ is small. The height of the
p.d.f. in the mode will be proportional to ¢ and to a=*/3.

In any case, the original increase in the mean values of the size properties will be
stopped and their decrease can be expected with growing fraction ¢ of small inner
cells. Consequently, a maximum of the mean values of these properties occurs at some
value of N. On the other hand, with growing NN, a monotone increase of variances
is ensured as the increasing number of small inner cells is compensated by gradually
greater outer cells.

Let N be kept fixed at some selected value and let the cluster size c start to increase
from some negligible value, 0.005 say. First the clusters grow without mutual interac-
tion; the local intensity Aq decreases proportionally to ¢—2, the secondary modes shift
to higher values and their heights continually decreases. Then, in the intermediate
range of cluster sizes, overlap of clusters takes place. Its degree can be estimated
as follows. The probability that a ball C' of diameter D = 0.55c/)\,1,/ % centred in a
point of the parent Poisson point process has a non-void intersection with another
such ball is p; = 1 — exp[—47\,D3/3] = 1 — exp[—(0.893¢c)?] (Stoyan et al., 1995).
Similarly p; = 1 — exp[—7A,D3/6] = 1 — exp[—(0.4465¢)?] is the probability that C
contains the centre of another such ball. Consequently, p1 and ps are rough measures
of mild and deep cluster overlapping, respectively. To ¢ < 0.5 correspond the val-
ues p1 < 0.1, p2 < 0.01, hence the overlapping (interaction) of clusters is negligible
- cluster size Tange I (the range of the growth without interaction). On the other
hand, if ¢ > 4 then p;, ps ~ 1 and the clusters are dispersed - size range III - the
cluster field in certain sense approach the Poisson point process of intensity A. In the
intermediate range II, 0.5 < ¢ < 4, the major changes of tessellation characteristics
are therefore expected. Very large as well as very small cells vanish here, the variances
of the size properties decrease accordingly. The mean values will approach the values
appropriate for PVT; hence they will decrease for small values of N and increase for
high values of N.

All these predictions based on the existence of inner and outer cells relate only to
tessellations produced by globular clusters. In tessellations produced by spherical
clusters, the presence of inner cells would be rather exceptional unless N is very high.
The secondary minima will be suppressed to a great extent and perhaps also misplaced
in comparison with the previous case. Then also a monotone increase of the mean
values as well as of the variances of the size characteristics is anticipated.

RESULTS OF SIMULATIONS

Beside PGCEF’s also binomial globular (BGCF) and Poisson spherical (PSCF) cluster
fields of the unit intensity A = 1/Ev = 1 have been generated. Simultaneously with
3D tessellations, also their 2D planar sections were examined. The range of variables
was 1 < N < 30 (at N = 1, 37% of Poisson clusters is void and 37% contains 1
daughter only) and 0.005 < ¢ < 10. Edge effects have been carefully removed and
each realization contained approximately 1000 cells for statistical examination. The
total number of realizations was about 3000 for each choice of independent variables
¢, N. Consequently, 3.10° cells and their 2D profiles have been analysed in each case.
The spherical clusters produce degenerate Voronoi cells (i.e. more than 4 edges meet in
a vertex) in the centre of the embedding ball. In order to avoid this, any daughter was
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given an independent small shift with random components sg, sy, s2; the components
were independent normal with the mean 0 and variance 0 = (0.00002)? (in the same
units as the size parameter c¢). It cannot be excluded that random oscillations of
daughters produce a slightly higher proportion of inner cells at ¢ = 0.005 and N > 20.

a) The effect of variable mean number of daughters N.

Fig. 1 The mean cell surface s (a) and the variance of the cell volume v(b). The
behaviour of the mean width w and of the perimeter p is very similar. The
circle at N =1 denotes the PVT value.

The mean values of cell size characteristics in the tessellations generated by globular
clusters behave very similarly; a maximum occurring at N = 2 or N = 3 (sharp in
BGCF and shallow in PGCF tessellations) is followed by a steady decrease - Fig. la.
The height of the maximum exceeds the value appropriate for PVT by 8-10%, the
lowest value attained at N = 30 is about 80% of the PVT value. The absence of the
inner cells in PSCF tessellations is manifested by a steady increase of the mean values
of the size properties.

The variances of the cell size characteristics are very sensitive to small changes in
generating point patterns and accessible with a reasonable reliability, too. All of
them are monotone increasing, in general, more quickly at low values of N and nearly
linearly at above N = 5 for v and for 2D profile area v’. All variances are higher for
PGCF than for BGCF but their difference becomes small at high values of NV - Fig
1b. The relative changes with respect to the PVT values are enormous, in particular
for globular cluster fields; thus at NV = 30 is w ~ 30 times and varv ~ 18 times
greater than in PVT. The changes in variances of shape characteristics and factors
are smaller; e.g. varg increases 8 times and varn only 2 times at maximum. The
variances of cell size properties in tessellations generated by PSCF are considerably
smaller as a consequence of the absence of inner cells; the reason of their slow growth
is the increasing variability of outer cells only.

The development or absence of inner cells can be simply followed by comparing the
probability density functions (p.d.f.) of some cell-size property at a small cluster size
and gradually increasing N - Fig. 2a. Binomial globular clusters have been chosen
here because of their simplicity; note the negligible dependence of the secondary mode
on the value of N > 6. In the tessellations generated by PSCF’s (Fig. 2b), small cells
are produced by an interaction of closely spaced clusters. They are not true inner cells;
their frequency is low, their size is much greater and the relation of their occurrence to
N, ¢ is quite different than in the previously described case (e.g. for the mean width,
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the height of the secondary mode decreases with decreasing cluster size for PSCF with
N =20 in contrast to Fig. 5a).
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Fig. 2 The probability density functions f,(z) of the cell volume in the tessellations
generated by BGCF (a) and PSCF (b); the cluster size ¢ = 0.005. The
p.d.f’s of other cell size properties behave similarly.

The behaviour of the shape properties is much more complex and significant changes in
their values take place in particular at small and medium values of N. For example,
shape factors continually decrease with growing N but they vary only little above
N ~ 15. Their values are very similar for both globular cluster fields and they are
only slightly higher for the spherical cluster fields. The values g ~ 0.55, f ~ 0.35 are
attained at NV = 30, ¢ = 0.005. The values of the shape factors in the PVT are 0.728
and 0.579, hence much flatter Voronoi cells are generated by cluster fields. Secondary
modes either very distinct (factor f - Fig. 4b) or rather spurious ( factor g) are again
observed.
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Fig. 3 The probability density functions f,(z) of the number of faces m in the
tessellations generated by BGCF (a) and PSCF (b); the cluster size ¢ =
0.005.

The behaviour of the number of faces n is very illuminative. The PVT value of N is
15.335 and varies in the interval [15,16] in tessellation generated by cluster fields. It
has a small maximum at N = 2 and then approaches the value of 15 (globular cluster
fields) or, after an increase at small values of N, moves slowly towards the value of 16
(spherical cluster fields). However, its variance has a steep rise at small values of N
and a maximum near N = 5 for spherical cluster field and near N = 10 otherwise.

The shapes of p.d.f’s are shown in Fig. 3. First, the primary mode of the distribution
shifts to higher values, its height decreases and cells with high number of faces are
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created. At the same time a small secondary mode emerges at = 4 and testifies
the presence of tetrahedral cells generated by the first inner daughters. For higher
N, this mode shifts to higher values of n and its height gradually increases. Finally,
a seemingly unimodal positively skewed distribution of n evolves with the mode at
z ~ 10, which is an important difference between PVT and globular cluster field
tessellations. The tail of the distribution is very long and includes the original primary
mode; the cells with n exceeding 50 were observed (in PVT, max(n) < 40 in samples
of comparable size). The maximum of the variance corresponds to the situation in
which the distance between the modes is the greatest. Nothing of this kind happens
in tessellations with missing inner cells generated by PSCF’s - Fig. 3b.
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Fig. 4 The probability density functions fs(z) of the random dihedral angle 6 (a)
and f;(z) of the shape factor f (b) in the tessellations generated by BGCF;
the cluster size ¢ = 0.005.

Appealing is also the behaviour of the randomly selected dihedral angle 6 (following
Lorz and Hahn (1993), one of the edges of any cell is chosen at random and the interior
dihedral angle of the adjacent faces is calculated). The mean value Ef does not differ
substantially from the average (cell) dihedral angle © (the average value of all interior
dihedral angles in a cell). A sharp secondary mode just bellow x = 7 occurs already
for N = 2 in all examined cluster tessellation at negligible cluster size - Fig. 4a - and at
about N = 6 includes as much as 10% of dihedral angles. The peak slightly broadens
and shifts to lower values for higher values of N. Its reason are small disturbances
of the outer parent cell faces caused by closely spaced daughters of the neighbouring
cluster. Its relative importance is weakened by the presence of numerous inner cells
at high values of N in the both globular cluster fields. Simultaneously, the frequency
of very small angles increases slightly. var @ has a shallow maximum at about N =6
for globular cluster fields and continually increases for spherical cluster fields.

Also the distribution of the average dihedral angle © change on growing N; namely
the originally unimodal distribution with the mode at ® ~ 27/3 broadens and in-
cludes also values of © as small as 7/3 at the values of N about 6 (the presence of
tetrahedral cells) in BGCF and PGCF tessellations; var © attains its maximum just
at this value of N. The frequency of the small average dihedral angles © is distinctly
lower in tessellations produced by spherical clusters and var © continually decreases
with growing V.

Shape properties thus sensitively reflect the various differences between PVT and
tessellations produced by cluster fields as well as dissimilarities between globular and
spherical arrangement of generators. For the latter case, also the shape factor f can
be helpful; a sharp mode near f = 0 (plate-like inner cells) can be observed only in
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tessellations generated by globular clusters - Fig. 4b.

b) The effect of variable cluster size c.
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Fig. 5 The distribution function F,(z) (a) and the p.df. f,(z) (b) of the mean
width w in the tessellations generated by PGCF with N = 20 and variable
cluster size c¢; = 0.005,0.01,0.02,0.05, ...,5,10,i = 1,...,11. In the sequence
of curves, the cell size parameter increases from the left to the right.
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Fig. 6 The mean value Es (a) of the cell surface and the variance varv (b) of
cell volume in the tessellations generated by PGCF with N = 5,8, 20 and
variable cluster size c as in Fig. 5. The values obtained by Lorz and Hahn
(1993) are denoted by dots, the dots at ¢ = 11 show the PVT value.

This effect can be most clearly demonstrated by varying the size ¢ at some chosen
fixed value of N - Fig. 5. The ratios of the neighbouring secondary modes of f,,(x)
are Tiy1 : & = Ci+1 : C;, the ratios of heights fu(wit1) :© fuw(zi) = ¢ @ ciyq for
¢i+1 < 0.5, 1e. 1 < 6 and ¢ within the cluster size range I. Hence the expectations
discussed in the section Preliminary considerations are confirmed and the tessellation
generated by very small globular clusters at higher N can be considered as a mixture
of small inner cells (their fraction is approximately 25% at N = 20, 35% at N = 30 for
PGCF, slightly lower values hold for BGCF) and large outer cells. Within the range
IT of cluster sizes, the differences between these two populations gradually vanish and
only negligible changes proceed during the further growth in the range III (the narrow
unimodal curves in Fig. 5b correspond to ¢ = 5,10). Other size properties change
similarly. P.d.f’s of shape properties does not change so distinctly, nevertheless all
secondary modes gradually vanish in the size range II.
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The effects of variable cluster size can also be observed by examining the moments of
the cell size characteristics. Three values of N and tessellations induced by PGCF’s
have been selected; namely N = 5,8 lying in the vicinity of maxima of several charac-
teristics and N = 20, for which the mean values of cell size properties are considerably
lower than the PVT values. The values N = 5,20 were also chosen for examination of
PGCF tessellations by Lorz and Hahn [3]: the lower of them was tested at two values
of the overlap parameter p; = 0.5,0.9, N = 20 only at p; = 0.9. In terms of the
parameter ¢, these values are 0.99 and 1.46, 4.e. within the range II. The agreement
between the both simulations is very good as shown in Fig. 6.

Again as before, great changes in the properties proceed in the interval of cluster
size 0.5 < ¢ < 5). Only some characteristics are practically constant in the whole
region I , other slowly change even there (in particular for N = 20). Whereas the
change in variances in the course of the passage from highly clustered tessellations
to PVT is monotone as a rule - Fig. 6b, the mean values (and also the values of
skewness and kurtosis) frequently pass through maximum or minimum in the range
of cluster overlapping as it was already reported for 2D (Saxl and Kohttek, 1997).
Their occurrence, height or depth as well as positions vary from one characteristic to
another one.

c) Characteristics of induced planar sections.

The well known stereological formulae relate characteristics of the 3D tessellations
and of the 2D tessellations induced in planar sections. The 2D intensity ' = EwA,
the mean cell area Ev' = Ev/Ew and the mean cell perimeter Es’ = 0.257Es/Ew .
(the mutually corresponding quantities are denoted by the same kernel letter and the
prime in 2D). Consequently, the 2D characteristics are again homogeneous function of
degree k' of the 3D intensity A\. The degree is k' = —2,—31 for v/, s’, resp. and k' = 2
for \'. The planar shape characteristics are number of edges n’, randomly selected
edge angle §', mean edge angle ©’ and shape factor f/ = 4mv'/s’ 2,
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Fig. 7 (a) The mean value Ev’ (thick lines) of the cell area and the variance var v’
(thin lines) of cell area in 2D sections of 3D tessellations: ¢ = 0.005. (b)
The p.d.f’s of the cell area v’ for the PVT (full line) and N = 2 (dotted),
20 (dashed) in 2D sections of 3D tessellations generated by PGCF (thick
lines) and PSCF (shorter thin lines); ¢ = 0.005.

As Ev = 1, Ev’ is just a reciprocal value of Ew as a consequence of the above
mentioned stereological formula - Fig. 7a. The mean perimeter s’ behaves similarly
and the variances of the both sectional size characteristics increase with growing N
analogically as the variances of 3D cell characteristics - Fig. 7a.
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Whereas the inner and outer cells are clearly distinguished in bimodal p.d.f’s of 3D
cell characteristics, the sectional characteristics are much less explicit. The reason lies
in sampling the 3D cell population by the sectioning plane. Denoting by ¢ the ratio
of inner (7) and outer (o) cell intensities in 3D, then in the section plane ¢’ = \;/\ =
qEw; /Ew,. The ratio of the mean widths of inner and outer particles is approximately
proportional to (A/A4)Y? ~ ¢. Hence if ¢ is about 0.25 for N = 20 and ¢ = 0.005,
then ¢’ ~ 0.001, and sections of inner cells are very rare. Moreover, the p.d.f. of cell
area is bimodal (with a secondary mode near z ~ 0) even in PVT as shown by Hahn

-and Lorz (1993). Therefore the main manifestation of the presence of inner cells is
the extension of the cell area p.d.f. to smaller values and the disappearance of the
primary mode - Fig. 7b. A little more revealing is the p.d.f. of planar cell perimeter s’
- Fig. 8a. A very shallow secondary mode is apparent here owing to the unimodality
of the p.d.f. in the tessellation induced by PVT.
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Fig. 8 The p.d.f’s of the cell perimeter s’ (a) and of the shape factor f’ (b) in 2D
sections of 3D tessellations generated by BGCF cluster field: ¢ = 0.005.

All sectional shape characteristics change again mainly in the region of small values
of N. n is unimodal for all N with the obligatory mean value En/ = 6. The only
discernible differences between generating cluster fields are a higher probability of cells
with small and high n' and a less sharp mode at n ~ 6 for globular fields, an increasing
sharpness of the mode with IV for spherical fields (at N = 30, a slightly narrower PVT
shape is approached) and, accordingly, a lower variance in the latter case. fo(z) is
bimodal with a secondary maximum near © = n, the probability of small angles is
higher and the primary mode is shifted to smaller values in sections of PGCF and
BGCF tessellations. Ef’ is not much affected by the value of N above 3, its variance
is nearly twice as high as in PVT and nearly constant for N > 10 (it is slightly smaller
for PSCF as the broadening of the secondary maximum is not accompanied by the
increasing probability of small angles). The p.d.f’s are very stable within the whole
range I of cluster sizes and the secondary mode is discernible even at ¢ = 2. The shape
factor f’ is bimodal even in PVT with modes = = 0.8 (primary mode), 0.6 (Lorz and
Hahn, 1993). However, the primary mode shifts to 0.7 and the secondary mode is
much more pronounced in tessellations generated by all considered cluster fields - Fig.
8b. Hence a reason of such a more distinct bimodality must lie in the shape of outer
cells and, consequently, the mean values Ef’ are very similar for globular as well as
spherical cluster fields: the mean values roughly about 15% lower than in PVT are
attained already at N = 4 and very slowly decrease with growing N. The variances
var f' are nearly constant and higher only by 10% than in PVT.
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CONCLUSIONS

Three examined variables of cluster fields, namely arrangement of daughters, clus-
ter size and number of daughters, substantially influence the generated 3D Voronoi
tessellations as well as their planar sections.

The cluster size is the most important parameter and if it exceeds considerably the
mean nearest neighbour distance between the parents (size range III) then the differ-
ence between examined tessellation and PVT cannot be reliably recognized however
large the number of daughters is or however disparate their arrangements are. On the
other hand, a further decrease of cluster size below some small fraction of the parent
nearest neighbour distance (size range I) influences many characteristics only weakly
and the mean number of daughters is the controlling parameter.

A prominent feature of the majority of examined distributions of cell characteristics is
the bimodality. It can serve as a basis of qualitative (presence of clusters, daughter ar-
rangement) as well as quantitative (cluster size, mean number of daughters) estimates
of the point field properties. Cell size properties are bimodal due to the presence of
inner cells developed in the cluster core when the number of daughters is high. An
extreme proximity of daughters generating outer cells invokes an important secondary
mode of the random internal angles 6,8’, plate-like inner cells initiate a secondary
mode of the shape factor f. The complex behaviour of the face number distribution
is also closely connected with the presence of inner cells. Unexplained remains the
bimodality of the sectional shape factor f' recognizable even in PVT.

A preliminary knowledge stemming from the qualitative analysis of property distri-
butions is important for more reliable estimates derived from the moments of various
properties as the effect of the cluster size and of the daughter number is not mono-
tone, in particular for odd moments and quantities based on it. Fortunately enough,
variances of cell size properties behave regularly: a monotone, significant and clearly
discernible even in planar sections increase of variances with growing N and their
decrease with growing cluster size can serve as a reliable base of estimation.
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