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ABSTRACT

This paper shows, in an introductory manner, how Hough Transform can provide a versatile
approach to many questions concerning planar convex shapes, with a special attention paid to
origin changes. Applications are given in the domains of shape symmetry parameters and
length computation. Radon Transform is shown to be a natural extension of Hough Transform

to gray-level and/or non convex shapes.
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INTRODUCTION _

The word «shape » will hereafter designate the interior of a simple (not self
intersecting) closed curve in the plane. A shape is considered as a mathematical model of a
planar view of an object.

This introductory paper shows how interesting it can be to place shape study into the
framework of Hough Transform (H.T.). It establishes the interaction between geometrical and
analytical concepts, such as diameter and support functions, origin translation, barycentrical

method, etc. Two significant applications are given : one in perimeter computation, the other
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one in shape parameters. A last part is devoted to Radon Transform, which extends the
properties already met with H.T.

THE SUPPORT FUNCTION OF A CONVEX SHAPE
Apparent diameter and support function of a shape
A convex shape being given, let Dy be any line with polar angle 8. Let d(B) be the
apparent diameter function (see figure 1), i.e., the length of the shape’s projection on Ds.
The main interest of function d(8) is Crofton’s theorem, which asserts that the mean
value of d(8) on [0, &), multiplied by constant 7, is equal to the shape’s perimeter.
Function d(8), though it is defined «in a natural manner» and is origin-independent,
does not characterize, by itself, a unique shape : two different shapes, for example a disk and a

« wheel », may possess the same diameter function (Fillere, 1995).
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Fig. 1 : A shape, its associated functions d(6) (diameter), ho(0) (support) and -ho(B+).

A more fundamental origin-dependent function, which is associated in a unique way to
a convex shape, is support function.

Here is a way to define it. Let us assume that a particular point O interior to the
shape has been selected. Let Dg be the oriented line with polar angle 6 passing through O. Let

us consider the endpoints of the shape’s projection on Dy (see figure 1). One of them has a
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positive abscissa on Dg ; we will denote it ho(6) and will call p = ho(6) the support function. It
is clear, using a 7 rotation, that the abscissa of the other endpoint is p = - ho(6+T).
The support function and the apparent diameter are linked by the following
relationship, valid for every point O :
d(®) =ho() + ho(6+m) for 0<O<m )
Let A be an interior point of the shape, with polar coordinates (poa,B0a) where the
index makes reference to origin O. The projection of A on the turning axis Dg clearly yields a
sine curve with equation
P = Poa cos(6—-6c4) 2)
If the origin’s position is not ambiguous, this function will simply be denoted pa(6).

If a point Q, with polar coordinates (poo,60q), is taken as a new origin (see figure 2), it

is easy to show that :

ho(8) = ho(6) + pag cos(6—00c) G

Fig. 24 : The reference shape.
Fig. 2B : Graphs for ho(8) and -ho(6+r) (origin O).
Fig 2C : Graphs for ho(6) and -ho(0+r) (origin Q). Fig 2C looks more « equilibrated ».

A BARYCENTRICAL POINT OF VIEW
Let us consider three (non aligned) fixed points A, B, C in a shape K.

_)
Any point M being given in K, vector OM can be decomposed, in a unique way, as

—> - -
OM = bOB + cOC
or M=aO+bB+cC with quantity a defined by relationship a+b+c=1.
Coefficients a, b, ¢ are called the barycentrical coordinates of point M.

A very straightforward argument shows that
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pu(®) = apo(®) + bps(®) + ¢ pc(®) “)
If, for example, O is taken as the origin, its associated sine curve is « flat » (see figure 3).
In this case, formula (4) becomes  py(6) = b pe(6) + ¢ pc(®).
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Fig. 3 : The sine curve of any point M of the shape can be obtained as a « weighted sum »

of the sine curves of three fixed points. Here, these points are O, P(-4,1), Q(-2,-1),

introduced on Fig. 2 (note that the sine curve associated to O is the § axis).

HOUGH TRANSFORM

« Classical » Hough Transform for points
An origin O being chosen, Hough Transform (H.T.) associates, to any point A with

polar coordinates (pos , Boa), the sine curve I'y_ ,  with equation p = poa c0s(0 - Boa) in the

(8, p) coordinate plane called the Hough plane.
Remarks : This definition should be interpreted in connection with formula (2).
Every origin choice gives a specific H.T.
The original interest for H.T. is that, to a set of aligned points, is associated a family of
sine curves which passes through a common point with coordinates (p;, 6:) in the Hough

plane.
Moreover, the equation of the line on which the set of points is located (see figure 4).is

xcos B, +ysinB, =p,
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Fig. 4 : The H.T. of aligned points is a set of intersecting sine curves in the Hough plane.
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Hough Transform for shapes
The H.T. of a planar convex shape is a subset of the Hough plane introduced above, which can
be defined in three equivalent ways (see figure 3) :

(A) as the union of all Feopo for points of the shape with polar coordinates (po, 6o).

(B) as the region « swept » (i.e., generated) by all sine curves associated to a point
which follows the shape’s border.
(C) as the region situated between the graphs of functions ho(6) and -ho(6+).
Remark : The boundary of the H.T. of a polygonal shape is made of portions of sine curves
(see figure 2B). Indeed, the endpoints of the projected line segment on Dy are always

projections of vertices.

TWO APPLICATIONS

An efficient perimeter estimation

The perimeter of a convex shape K is given by the following formula (Santalo, 1976) :
2T
Py = .l;ho (6)d6

which can be interpreted in the following way : Px is a half of the area of the H.T. of K.

Its proof is easy, by integration on [0, w) of both sides of relationship (1) and use of
Crofton’s theorem.

This connection gives a good way to obtain an accurate value of the perimeter of a
convex shape by the computation of the area of its H.T. It is a reliable and efficient method

compared to unpredictable direct evaluations based on contour tracking.

A new symmetry coefficient

Some domains of image processing, granulometry for example, need an efficient
characterization of shapes circularity and/or symmetry, in order to get information for
recognition or classification.

These shape properties are often expressed by coefficients defined on a certain scale,
for example [0,1] ; a property is considered as fulfilled or not according to the values taken by
the coefficients. For example, if A is the area and P is the perimeter of a shape, the quantity

4mA/P?, which takes its values on the scale [0,1], is a (rather simple) coefficient of circularity.
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We want to show how H.T. can be used as a «heuristic method » in this domain.
Let us introduce first the « middle function » with respect to an origin O

ho(®)-ho(®+m)
2

mqp(6) = for 0<O<m

Remark : mo(0) = 0 for 8 € [0, 2x) if and only if the shape possesses O as a symmetry center.
Point O can be considered as « well centered » if function mo(6) has « moderate »

variations with respect to 8 axis ; but these variations should be taken in a relative manner : if,

for a certain 8, d(8) is large, value mo(0) will tend to be relatively large too. This is why

_2mp(®)
Co =3~ 4)

. 2 D
is a better centering measure than supmgq(8), with ;1_(—(5 as weighting
0

function. Now, the « best centered origin » O is a point which gives the smallest Co , whence

a new symmetry coefficient :
. 2mg (©)
Q= ucl)f S‘;p_T(QG_)—
Remark: 0 < ¢ < 1/3 with @ =0 (resp. ¢ = 1/3) if and only one has a centrally symmetrical shape
(resp. a triangle). The point for which ¢ is reached is the classical Minkowski point (Labouré et
al, 1993), which is the best centered point in the shape.
Coefficient ¢ can be related to classical Minkowski coefficient y defined by :

Y = sup infho—(e) in the following way : v = I-e
o 6 ho(®+m ' l+¢
RADON TRANSFORM

A natural extension of H.T. to gray level shapes is Radon Transform (R.T.), a basic
tool in Computed Tomography (Toft, 1995), illustrated on figure 5.

A discrete version of R.T. can be defined as follows. Let K be a gray level discrete
shape on a grid. To each point of K with gray level n, we associate, in a discrete Hough plane,
a discrete sine curve with a gray level en (where ¢ is a small constant), being understood that a
summation of these gray levels takes place : the resulting « shape » is the (discrete) R.T. of K,
often called its « sinogram » (see figure 5).

For the continuous R.T., replace summation by integration.

R.T. is linear and invertible : it is possible to characterize a shape by its sinogram even

if it is non convex and defined in a « fuzzy » manner (in the biological domain for example).
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Fig. 5 : A polygonal shape and its sinogram. Some portions of sine curves are visible

CONCLUSION AND FUTURE ORIENTATIONS
We have shown, with two very different examples (perimeter computation,
determination of a shape coefficient), that H.T. provides a new approach to shape study ; other
application fields could be given, for example in connection to radial density (Fillere, 1995). Its
natural enlargement, R.T., overcomes some limitations of H.T.; its rich theoretical and
practical framework can bring new answers (and new questions) in the domain of shape study.
We are working on another extension of H.T., where sine curves are replaced by other

curves : significant results have already been obtained (Fillére et al., 1998 ; Becker, 1998).
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