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Abstract

Three-dimensional (3D) grain sizes were generally obtained by converting the 2D or 1D grain
sizes fo 3D with the methods based on spherical grain model (S-model). In this paper, the systematic
error and its origin involving the conversion of grain sizes caused by the S-model is analyzed in the
2-D case, and a new polyhedral grain model (P-model) is developed to calculate 3D and 2D grain
sizes from the 2D and/or 1D data. Experimental analyses show that the systematic error originated
from the spherical model can be well corrected by using the new polyhedral model.
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1. Introduction

One of the most important quantities to be determined in polycrystalline materials is the grain
size distribution function (SDF). The grain size is defined with the volume V in three dimensional
(3D) cases, or with the (intersect) area A in 2D, or the intercept length L in 1D of a grain. Mostly
also an equivalent radius R is used as the grain size, which is defined as the radius of the sphere of
equal volume in 3D or of a circle of equal area in 2D or as half the intercept length in 1D of the

grain, respectively:
4
VzgnRg’; A=7R:; L=2R (1)

Where the dimension of grain is indicated with the subscript 1, 2 or 3 of R. Correspondingly, a SDF,

F(R) is defined so that F(R)dR gives the relative number of grains (frequency) in the range between
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R and R+dR with j F(R)dR =1, or, in the discrete form, F; gives the frequency of the grains in the

i-th size class with ZF,- =1.

The problem which here arises stems from the fact that only the 1D and eventually also the 2D
grain size can easily be measured, but that it is extremely laborious and for large style investigations
practically impossible to experimentally determine the grain volume and thus the SDF for 3D grains
(e.g. by continuous sectioning "*). But, since mainly 3D bodies are used, it is just this 3D SDF
which is the most important one. For this reason, procedures to reproduce the 3D SDF from a 1D or
2D distribution being obtained by measuring the intercept lengths along random straight lines or the
intersect areas in random sections through the specimen were treated first by biologists”® and later
also by metallurgists (e.g. Scheil®*!) before about 70 years, which were all based on the supposition
of spherical shaped grains, and so that were referred here to as “spherical grain model”, i.e. S-model.
The S-model is generally accepted and till now is the most popular method applied to obtain 3D
grain size distributions. It is now our purposes (i) to show that this method will cause grave
systematic errors in the converted SDFs and often does not give even a good approximation, and (ii)
to present a way for deriving a more correct distribution.

The reproduction of a higher dimensional SDF F(R) from a measured lower dimensional SDF f

(r) is based on the fundamental equation:

f(r)= _[ 9(R)p(R,r)F(R)dR )
Here g(R) is the probability that a grain of size R is met by an arbitrary (measuring) section or
straight line through the specimen (called as “sampling effect”), and p(Rr) is the probability that
such a section or line going through a grain with radius R leads to an area or intercept of radius r
with 7 < R (“truncation effect”). However, ¢ and p depend on the geometrical shape of the grains so

that, for evaluating Eq.(2), a geometrical model of the grains must be assumed.
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The only model generally accepted until now is, as just mentioned, the S-model, which has the
advamtage that the functions g(R) and p(R¥) can easily be derived. One obtains here for the 1D —
2D, 2D — 3D and 1D — 3D conversions'®:

GR=2R  phRr=r/(RE )
G(R=2R ; py(Rr=r/(RE 1) ©)

g(R)=mR> ; pi(Rr)=2/R

After inserting these expressions into Eq.(2) the unknown function F(R) can be calculated by
inversion of this equation, if the distribution f(r) is known (e.g. has been measured).

Since the first presentation of this method in 1925 ), many papers have been published on this
model (overviews are given by DeHoff "' and Exner ). However, they all deal with secondary
questions, as e.g. with another derivation of Eq.(3), with the better numerical solution of Eq.(2),
with the statistical error caused by the division of grain sizes into discrete classes, or with the
equation whether the application of 2D — 3D or 1D — 3D inversion will lead to better

(%14 Byt only little attention has been given to the primary question of what is the

reproductions etc.
error caused by the model itself, i.e. by the assumption of spherical and circular instead of polyhedral
and polygonal grains. Naumovich er ol have calculated the function p(R,7) for a cube, a
tetrahedron, a tetrakaidecahedron and a rhombic dodecahedron and found that the difference of the
3D SDFs reproduced from the intersect area (2D) distribution with various geometric models is
much smaller than that reproduced from the intercept (1D) distribution. But in their paper the
functien g(R) was not considered and no explicit practical method was given for the calculation of
3D SDFs using polyhedron models.

An indication of the error caused by the S-model gives already Fig. 1. For a grain pattern

containing 780 grains copied from the micrograph of an annealed ordered NiAl sample (Fig.1a), the

measured one-dimensional grain size distribution (1D GSD) and the 3D SDF derived from it by the
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S-model (practically, Bockstiegel’s method'”) are plotted in Fig. 1b. One recognizes that this 3D
SDF contains many small grains (grains with R<20pum amount to more than 50%), which do not
show up in the micrograph and thus must be a result of an erroneous reproduction method (“ghost
grains”). In Fig. 1b, another 3D SDF calculated with a new method called “DPF method” based on
polyhedral grain model ') is also plotted (dash-dot line), which, with the maximum probability of

grain gize at about 50 pum, seems to be much closer to the reality.
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(a) grain pattern of a ordered NiAl polycrystalline sample

25
n —
§ '''''''''' (DPF) (b) 1D grain size distribution (dash
% 15 line) measured from Fig.1a and
- the 3D SDF reproduced with S-
.g 10 i model] (solid line) and the DPF-
= s /¥ method""® based the polyhedral
- 7 model (dash dot line).

ot &

0 40 80 120

grain size R, pum

Fig. 1 an example to show the systematic error of the S-Model
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To discussion the origin of the error of S-model and to develop a new geometrical model by

which a better approximation can be achieved, the reproduction of 2D SDFs from measured 1D data

will be: investigated in the next section. This problem because of its lower dimensionality ——
is firstly simpler than the ones including 3D distributions, secondly has the advantage that both the
1D and 2D distributions can be measured and thus the validity of the model can be experimentally
check:d, and thirdly has the same principle as the conversion of 3D SDFs (e.g. the 2D—3D

conversion has the same g and p functions as the 1D—>2D conversion in the S-model). And then, in

Section 3, we well discuss the conversion of 3D SDFs.

2. Origin of the error of the S-model and the development of the P-model

I order to demonstrate the main difference between the S-model applying circular grains and a
real microstructure consisting of polygonal grains, a subfield of the grain pattern of Fig. 1a with 28
grains is redrawn in Fig. 2 a and the grains are replaced in Fig. 2b with circles of the same sizes.
Then the 1D grain size distribution (GSD) as well as the 1D circle size distribution (CSD) have been

derived by laying straight lines through the patterns and plotted in Fig. 2c.
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Fig. 2 an example to show the difference between polygonal and circular grains
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Cne sees in Fig. 2¢ that the 1D size distributions measured from the grain pattern and the circle
pattern are very different, particularly for the small intercepts. Since Fig. 2b has the same geometrical
feature as the S-model, this means that using the S-model one could obtain the #rue 2D SDF only
from the 1D CSD but nof from the data measured in the real grain pattern. In other words, using the
S-model over the data from a polyhedral grain structure can not give a correct conversion. In
particular, the excess small intercepts in 1D GSD over CSD will be automatically considered as
being. from small circles by the S-model, thus a larger number of small spherical grains than really
exist is needed for the S-model in order to obtain the larger frequency of small intercepts, and so
that a large number of ghost grains as to be seen in Fig. 1b will be given by the S-model.

The physical reason for this discrepancy can easily be located, if one considers the fact that
much fewer small intercepts can be obtained during the measurement on a spherical (circular) pattern
than on a polyhedral grain pattern, since, in contrast to the supposition of the S-model, grains
possess corners and edges. In order to give a quantitative analysis, a new 2D polygonal grain model
has been developed, which will be given in the following.

For the sampling probability g},(R), i.e. the probability that a polygonal grain with size R is met
by a straight measuring line is determined by the length 2Rp. obtained by the projection of the
polygon onto the line normal N7 of the measuring line T, (see Fig. 3), which can be calculated by
integrating cos Ods along the whole perimeter of the polygon and averaging over all measuring
directions:

T2
P - 1 N
q12=2RPr=£ f J)cosedsdG:; )
2 s

It is clear that for circular grains, since s=2nR, Eq.(4) gives the same result as Eq.(3). To find a

relationship between R and s for polygonal grains (irregular polygons), the perimeters s, side-

numbers # and grain radii R of about 2700 grains of various 2D annealed metallic samples with about
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equiaxed grain patterns have been measured, averaged in grain size classes, and plotted in Fig. 4 with

solid dots. Using the least square method these results can be represented by the linear form:
s=mn(21R+021R) 5)

This i, plotted in Fig. 4 (solid line) and leads to the sampling probability of polygons:

ao(R) = % ~021R +21R 6)
20
T 6 N: g e
- N 5 /
i g1 -
ds £
cos@ ds =
< L
<
o 0
= o 1 2 3
relative grain size, R/R
Fig. 3 calculating the sampling Fig. 4 perimeter lengths as a function
probability of a polygon of grain sizes in 2D

'I.he truncation effect is strongly dependent upon the geometric feature of the grain. Some given
geometric model is therefore necessary to calculate the truncation probability. In the present paper
the regular pentagon, hexagon and heptagon have been used, since they are simple and also close to
the most 2D grains geometrically. The calculation has been done analytically with the method
descri»ed in the following for pentagon as an example.

As shown in Fig. 5 for a pentagon with the side length a, the intercept length L of a measuring
line T through the pentagon are determined by the orientation angle ¢ and the distance Z between

the measuring line and the coordinate origin:

(cotg + cot(2w— )z . 0<Z<Z(9)
b

Ly, Z)= 2(Z-a-sing)sin a-sin(39) o)
cos(24)+ cosw * sin(2w—-¢) ’ Z(P<Z<Z,(F)
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with @ =7/5 and
Z(p)=asing

i ®
\ZZ(go)za- sinqo+a(l—-sin(s%m¢i—ajco %+(p)

For an arbitrary constant A, (0<A<2acosw), the equation L(¢p,Z)=A gives one curve when 0<A<a or
two curves when A>a in the a~Z plane by Eq.(7). The length of these curves is proportional to the

truncation probability of the pentagon with the intercept length A:

P (an)=C-8 = C | 1+ (dz/do) do ©)

This linear integration is then numerically calculated and normalized to determine the constant C. For

Pent Pent

the application the function p"*(a,4) is transformed into p"“"(R,r) by replacing a and A with r=A/2
being the 1D radius and R the equivalent radius of the pentagon respectively.
The calculation of the truncation effect of a hexagon or heptagon is similar although more

complicated since they have more sides than a pentagon. The results are given in Fig. 6.
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truncation coefficient , 7/R
Fig 5 the intercept length of a line Fig. 6 truncation probabilities for some regular

through a pentagon polygons as compared with circle
From Fig. 6 one sees that: (i) the curve for hexagon has a sharp peak at 7/R~0.95, which is

directly originated from the parallel sides of the hexagon, (also the curve for circle has sharp peak at
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r=R, since a circle has infinite infinitesimal parallel sides); (ii) the curves of the polygons extend
througth to the region of 7/R>1; and (iii) the curves of polygons start not from p=0 but from p>0 at
r/R=0

Since real 2D grains are not regular hep‘;agons, hexagons or heptagons, some modification must
be made to make the model to be in conformity with the feature of real grain structures. For this
reason, the 2D SDFs are converted from 1D SDF of the NiAl sample (Fig. 1a) with the S-model
(Circle), Pentagon-, Hexagon-, Heptagon-model and the regular Polygons-model’, which is defined
by the average of the 3 polygons above, and plotted in Fig. 7. Here one sees that the 2D SDFs
calculated with various polygonal models are very close to each other (and also very close to the

measured 2D SDF), while the SDF calculated with the S-model contains much more small grains

than others.
From this result one would be able to 100 T
recogriize that for the truncation effect the X o=
? - —0o— Circle
. £ 5
most mportant difference between the S- % OW . Pentagon
) H 10 /! —O— Hexagon
model and a polygonal grain model would E s 5 i —o— Heptagon
-‘3“ ,’ &1 / —m— reg. Polygons
be in the region of small 7/R, ie., as one § e/ —e— measured
g L/

i A
can see from Fig. 6, the truncation / %/
5

o 0 0 100 150 200
probability curves of polygons start from grain size. pm
constants while the S-model from 0 at Fig. 7 2D SDFs calculated from 1D

with various models
7/R=0 and the differences in the large »/R

region would be not principle. Therefore we can make a radical modification on the RP-model to

develop a simple polygonal grain model. Such a model has been so chosen: firstly the p(R #) for small

" For all polygonal models, the truncation probability is defined by Eq.(6).
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/R should be constant with the value similar to the Hexagon since the angle at the corners of grains,
which determine the p(R,r) for small /R, will often be close to 120° independent of the number and
length of sides. of the grain; and secondly, the p(R,7) for lafge #/R can be similar to the S-model since
the dirYerence of various models in this region plays only a little role on the conversion; thirdly, the
P(R,7) near r/R=1 should be limited since there would be few parallel sides in a real grain structure;
and finally, the p(R,r) would be stopped at 7/R=1 for the sake of simplifying the conversion process.
Thus i new geometrical model called the Polygonal model (P-model) has been defined with the

sampling probability given by Eq.(6) and the truncation probability by:

(036 . (000<r/R<034)
PNRE=r | (034<r/R<095)
PR(Rr)R= (10)
12 50 . (095<r/R<100) -
l0.0 , (100<r/R)
Fig. 8 gives the truncation probabilities ] i
X S5f-—— reg. Polygons
D,,(R,i)) of the S-, the RP- and the P-model. To P Polygonal i
g !
3 )
check these models experimentally, three E‘ i
- . 2
samples are used in the present paper, they are: 2
©
(i) Al-3%Mg with 1260 measured 2D grains, E
0 Sy W Y J - n 1 .l P PE N
0 02 04 06 08 1
(i1) Aimco-Iron with 700 grains, and (iii) NiAl truncation coefficient , 7/R

. . . . ig. i ilities of
with 780 grains (Fig. la). From the 1D grain Fig. 8 truncation probabilities o

various 2D models
size measured data, the 2D SDFs are converted
using various models, the average 2D grain radii Rand the variation coefficients Kk (defined by the
ratio of the standard deviation of grain sizes to the average grain size, k=0/R) are then calculated
and exhibited in Table 1 as compared with the experimentally measured 2D data. Here one sees that

the relative deviations of the calculated values from the measured ones are about 30 % in R and

over 40% in x for the S-model, but smaller than 10% for both RP- and P-models.
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Table 1 Comparison on the 2D average radii R and variation coefficients k

average radius R, pm variation coefficient K

measured| S-model |RP-model| P-model | measured| S-model |RP-model| P-model
Al-3%Mg 16.29 10.64 15.11 15.15 0.54 0.84 0.58 0.58
Armco-Fe 17.51 11.34 16.73 16.75 0.68 0.95 0.70 0.69
NiAl 47.55 33.78 45.90 45.66 0.44 0.73 0.49 0.49

These results would be a great surprise since the P-model is only a rough approximation and is
nearly as simple as the S-model, but leads to such a good agreement, as compared with the S-model,
between the converted and the measured data. Because the principle difference between the P- and
S-model is only that p ,(R,7) tends to a constant for the P-model but to zero for the S-model when
r—0, the results above indicates that the error caused by the S-model lies in the fact that, in contrast
to spteres, real grains posses corners (and edges in 3D) near to which the probability of obtaining

small ntercept lengths is strongly increased.

3. Development of the Polyhedral model

The sampling probability that a polyhedron is met by a measuring line or a measuring plane, i.e.
13 OF @z, is given by the average projection area Ap, or the average projection height A, of the
polyhedron respectively. Because it is extremely difficult to estimate both Ap and H, for real
grains, and also being considered the fact that the sampling effect of the P-model is only some
modif cation of that of the S-model, see Eq.(3) and Eq.(6), an approximate method was used here to
find tt e expressions of the sampling probabilities of polyhedral grain in 3D.

For q13, the average projection area A p, can be expressed by the size R and the face number N
for rejrular polyhedrons with N =4, 6, 8, 12, 20, etc. with the data of any mathematical handbook.
Using the results of measurements of R and N for various grain samples '”' | g3 can then be given

with the function of grain size R :
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4,;(R)= 4, =31R* +042RR (11)
Fkor {23, if we consider the fact that on the projection plane perpendicular to the measuring plane
the configuration of the polyhedron and the measuring plane is reduced to a polygon and a line, g2
can be then approximately replaced by gi,, that is:
4,,(R)=q,(R)=21R+021R (12)
To calculate the truncation probabilities of a polyhedral grain cut by a measuring line or a plan,
P13 01 pa, one should pay the most attention to the small intercepts or intersects, while their
‘ distributions in large 7/R region will be less significant for the conversion quality, as we just
discussed in the 2D case. Hence, for the calculation of the truncation probabilities, we choose here
the 14-sided tetrakaidecahedron (Fig. 9), since its geometry is not only simple but also very similar to
real giains. Especially, the angles between two faces of the tetrakaidecahedron are very close to that
of a grain, which is a very important geometrical feature for the truncation probabilities.

Because it is very complicated (if not impossible) to ‘
meas. plane |Z

0
TR

calculate p(R,r) analytically like in the 2D case, a numerical

method has been used in the present work. Using a large

number of random measuring lines or planes across the

tetrak iidecahedron (Fig. 9) with the efficient radius of R,

the di: tributions of intercept length and intersect area can be

calculated respectively, which give pi3 and pss. The results Fig. 9 a measuring plane intersects
the tetrakaidecahedron

were plotted in Fig. 10 (dot-dash lines) together with the

curves of the S-model {dash lines).
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Fig. 10 Truncation probabilities of the S-, K- and P-model

vSince the tetrakaidecahedron has many parallel faces, the resulting curves contain sharp peaks at
r=~0.89R for 1D—3D and r~0.96R for 2D—3D. Also here calculations with bodies without parallel
faces would have been beneficial, but are very complicated. According to the discussion in the 2D
case, we can further simplify the model to cut the peaks without decreasing the conversion quality
of the calculated SDFs. The simplification of the truncation probabilities was so carried out that first
the siinple expressions for py3 and py; should be obtained, second the simplified functions must be
well fitted with the data from the tetrakaidecahedron, and at last the truncation effect with >R will
be neg lected to simplifying the converting process later. As the result the following set of truncation
functinns is proposed, which is called as Polyhedron-model, or simply “P-model” in the present work

and also plotted in Fig. 10 (solid lines).

060 ,  (0.00<r/R<033)
. 180 7 ,  (033<r/R<097)
PoROR=V100  (097< #/R<100) (13)
0 , (100<7/R)
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. rNR=r* | (030<r/R<095)
Pa(RNR=1 44 ., (095<r/R<100) (14)
0.0 . (100<7/R)
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4. Experiments and discussions

For the direct check of various geometrical models, a block of extremely coarse grain-sized high
pure aluminium was separated into single grains with the method of forming a Al-Ga liquid alioy film
in grain boundaries. The grain sizes were then obtained from the weights of the grains, and the
experimental 3D SDF was calculated from about 1000 single grains. From the section planes of the
same sample, 1D SDF was measured and converted into 3D using the S- and P-models respectively.
In Fig 11(a), the 3D SDFs converted with the S-model (open circles) and with the P-model (open

squarcs) are plotted to compare with the measured 3D SDF (close diamonds).
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3 20 —&— measured 3D SDF g 20 —8—P-model 2D to 3D
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(c) Armco pure Iron sample (d) ordered NiAl sample

Fig. 11 Comparison of the 3D SDFs converted from 1D with the directly measured (a)

or from 2D converted ones (b, ¢, d) for the S- and P-models
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Due to the difficulty of direct measurement cl)f 3D SDFs, the further experimental check of the
S- and P-model has been made by the comparison of 3D SDFs converted from 1D and 2D SDFs
measured from the same sample, since only when both 3D SDFs are coincident the geometrical
model used can be valid. In Fig. 11, 3D SDFs converted from 1D (open symbols) and from 2D

“(close symbols) using the S-model (circles) and P-model (squares) for Al-3%Mg (b), Armco-Fe (c)
and the ordered NiAl (d) are plotted.

From Fig. 11 one sees that the 3D SDFs converted from 1D using the S-model are very
different from the measured 3D SDF or the 3D SDFs converted from 2D. The common and
significant feature of the 3D SDFs calculated from 1D with the S-model is that they contain much
more small grains than the measured or from 2D converted 3D SDFs. The origin of such
systematical error, as we just discussed in the 2D case in section 2 of the present paper, is that
Spheres possess no edges and corners and so that the S-model consider the most small intercepts
measured from the grain edges or corners as from small spherical grains.

Because the conversion of 1D to 3D can be principally divided into one 1D to 2D and one 2D
to 3D conversions, the systematic error of the S-model will be introduced twice for 1D to 3D
conversion and much larger than that from 1D to 2D or 2D to 3D conversion (cf. Fig. 7 and Fig. 11).
With this view, a 3D SDF converted from 1D by the S-model could be useless even for a rough
estimetion of grain sizes. In the other side, one finds from Fig. 11 that the P-model gives the 3D
SDFs practically identical with the measured one even directly converted from 1D, and also the 3D
SDFs from 1D and 2D are coincident, which means that the P-model is a rather proper geometrical

simplification of the calculation of 3D SDFs from the measurements of 1D or 2D.
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4. Conclusions

The so far applied method of calculating 3D grain size distributions from 1D linear intercept and
2D infersect area distributions assumes spherical grain shape. This method has the advantage of great
simpli:ity, but leads to a grave systematic error, which is mainly due to the absence of edges or
corners in spheres being present in polyhedral grains. In the present paper it has been demonstrated
that the use of a properly chosen polyhedral grain model is nearly as simple as the so far used
spheri :al grain model, but gives much better results. Particularly the here proposed “P-model” yields
very good conversion from 1D to 3D and 2D to 3D and very well suited for practical application in

calculiting of 3D grain size distributions from 1D or 2D distributions.
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