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ABSTRACT

A modification of a previously established Diophantine equation enables the
structure of further inclusion hydrates to be predicted, and points the way to a
general algebraic theory of crystal structure.
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INTRODUCTION

In the first part of this work (Aboav, 1997) an attempt was made to classify
certain crystalline substances topologically, without invoking the concepts of
length and angle. The substances chosen were inclusion hydrates, whose structure
is commonly regarded as a periodic, 3-dimensional, 4-connected honeycomb, with
an atom of oxygen at each vertex, with some or all of its cells enclosing
molecules of various kinds. The elements of such a figure are vertices II;, edges.

I;, faces II,, and cells or polyhedra Il;, whose number is here denoted by Ny, Ny,

N,, and N, respectively®. A unit cell comprises N, contiguous polyhedra, sharing
Ny vertices, N, edges, & N, faces.

Table 1. Topological structure of some inclusion hydrates.

hydrate 12 14 15 16 N, N, R

chlorine 2 6 46 8 11-50
chloroform 16 8 136 24 11-33
alkyl onium salt 6 4 4 80 14 11-43
bromine (tetragonal) 10 16 4 172 30 11-47

(orthorhombic) 14 4 4 4 148 26 11-39

Table 1 shows for five such hydrates, the number of 12—, 14—, 15—, and 16-hedra
(cols.2 through 5); Ny, the number of vertices (col.6); and N,, the number of

polyhedra (col.7) per unit cell. R, the ratio 2Ny/N;, is shown in col.8. [This
corrects Table 1 of Part 1, which contained two errors].

*Note: In Part 1, N, and N, were referred to as Il and Il3; but, following Coxeter
(1973), we shall henceforth denote the number of elements II; by N; (i =0,1,2,3).
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In each case, excepting the tetragonal variety of bromine hydrate, N, and N; were
found to be proportional to solutions of the Diophantine equation:

2ax = 30y + 2 (1)

where x, y, and z are odd primes or unity, and z may be positive or negative. The
factors of proportionality were found from the experimental data to be given by
the equations:

No= 2%x, (2)
and

Ny= 2By, (3)

where x,, v,, and z, are solutions of Eq.(1) for a given value of a; and a and B
are positive integers, such that:

(a-B+1)=a-6. (4)

It was further established, as an empirical finding, that in those instances where
Eq.(1) serves to classify a crystalline form, its first and second terms do not differ
from each other by more than about 1 per cent, i.e. the quotient z/23x does not
exceed 1/100. The ratio R is consequently approximately expressible in each case
as:

R =~ (3/2)6 (5)

Doubtless as more data become available it will be possible to fix this apparent
limit to the magnitude of z/22 more precisely. Meanwhile we aim, by generalizing
them, to extend the above relations to cover a wider range of hydrates, with the
ultimate object of eliciting from the empirical data a universally applicable
algebraic theory of crystal structure.

A MORE GENERAL ALGEBRAIC REPRESENTATION

As can be seen from Table 1, the factor y, in Eq.(3) for the tetragonal variety of

bromine hydrate is not prime, but is composite and equal to 3x5. To extend the
proposed classification to include this and possibly other hydrates we now consider
the more general Diophantine equation:

2ax = 3Py + 2 (6)

where x, y, and z are as in Eq.(1), with the aforesaid limitation z/23x < 1/100;
and b, like a , is a positive integer. To indicate their dependence on a and b the
roots of this equation are denoted as X, Vg, and z,,.

The experimental data show that, if the above variety of bromine hydrate is to be
included in the classification, the ratio R (= 2Ny/N4), which as Egs.(2) & (3) show

is proportional to 29-B+*1 must also be inversely proportional to 37, i.e. that:

R = (29-B+1/37)x, /Y0 (7)
where
Y=b-6. (8)
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Since Xg/Yap 3b/22, R is in this case still expressible by the approximate relation
(5); but the fact that neither Ny nor N; may be fractional indicates that either:

No = 2937 Tx,
(9)
N = 2Byab
or
Ng = 2%,
(9")
Ng = 2P3Ty,,

according as b is less than, or greater than 6. If as in Eq.(1) b = 6, v from Eq.(8)
is equal to zero; and N, and N, are consequently given as before by Egs.(2, 3).

Odd-prime solutions of Eq.(6) for b = 4 through 8, and for which z/2ax < 1/100,
are shown in Table 2 where, as before, solutions beyond the smallest, as well as
those for which any of the three numbers x,, v,, z,, exceeds 100, are omitted.

Those appertaining to the four hydrates dealt with in Part 1 of this work are shown
in bold type.

Table 2: Smallest odd-prime solutions of Eq.(6) for which z/23x < 1/100

b=24 b=5 b=26 b=7 b=28
a Xab Yab Zab Xab Yab Zab Xab Yab Zab Xab Yab Zab Xab Yab Zab
2 61 3 1
3 71 7 1
4 97 19 13
5 43 17 -1 23 1 7
6 29 23 -7 19 5 1
7 7 11 5 59 31 -19 17 3 -11
8 13 41 7 41 43 -47 37 13 -5 43 5 73
9 3 19 -3 11 23 43 67 47 41 47 11 7
10 7 89 -41 23 97 -19 5 7 17 79 37 -23
11 7 59 -1 11 31 -71
12 13 73 31
15 1 5 =37

For convenience, solutions of Eq.(6) are henceforth denoted by placing its indices
a,b in square [ ], and its roots Xy, Ya, Zg, in curly { } brackets; so that, for

example, [7 4){7 11 5} denotes the solution 27.7 = 3411 + 5.

Table 2 shows that, subject to the above restriction on the magnitude of z/22x, the
smallest odd-prime solutions of Eq.(6) for a = 8 and b = 7 are Xap = 43, Yap = 5;
from which it follows by Eqgs.(4, 8, 9') that Ny (=22.43)= 172 and N, (= 2.3.5) = 30.
That these two numbers are the same as those found by experiment to
characterize the tetragonal variety of bromine hydrate (Table 1), which as we saw
was excluded from the initial classification, indicates that, if Eq.(1) is generalized
as here suggested, the range of inclusion hydrates included in a classification
based on the resulting equation is extended, and the structure of further, hitherto
unidentified chemical compounds thus made predictable.
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PREDICTED HYDRATE STRUCTURES

Five of the 26 solutions of Eq.(6) listed in Table 2 thus give, through Egs.(9) &
(9'), values of N, and N5 equal to those found by experiment to characterize the

hydrates of Table 1. These solutions, which lie in the range 5 < a < 10, are shown
separately in Table 3, from which it will be seen that for them y, in no case

exceeds 13.

Table 3: Solutions of Eq.(6) for the hydrates of Table 1

b=24 b=25 b==6 b=7 b=28
a8  Xap Yap Zap Xab Yab Zab Xab Yab Zab Xab Yab Zab Xab Yab Zab
5 23 1 7
6
7 17 3 -1
8 37 13 -5 43 5 73
9
10 5 17 17

Table 2 has, however, three further solutions of Eq.(6) which lie within the same
range and for which y,, does not exceed 13: (6 5){19 5 1}, (7 4){7 11 5},

and (9 7){47 11 7}. These are shown in Table 4 in italics, together with the
solutions of Table 3.

Table 4: Solutions of Eq.(6) for which 5 < a < 10, and vy, < 13.

b=24 b=5 b=26 b=7 b=28
a Xab Yab Zab Xab Yab Zab Xab Yab Zab Xab Yab Zab Xab Yab Zab
5 23 1 7
6 19 5 1
7 7 11 5 17 3 -11
8 37 13 -5 43 5 73
9 47 11 7
10 5 1 17

Since hydrates exist with a structure characterized by the first five of these eight
solutions, it is reasonable to suppose there may be some with structure
corresponding to the other three. Hence, as a first step, models of honeycombs
corresponding to one of these solutions, (6 5] {19 5 1}, will now be made, with
the object of discovering whether there exist inclusion hydrates of that structure.

The construction of such models is problematic, since there is no logical path from
the solutions of Eq.(6) to the metrical properties of the figures they represent.
Moreover Egs.(9' & 9), which give the total number of polyhedra (N3) and of
vertices (Ng) in the unit cell of the honeycomb, do not specify their partition, that
is, they do not indicate how these numbers are to be distributed among differently
shaped polyhedra. Without that information therefore the models have to some
extent to be constructed intuitively.
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The way here chosen to set about that task depends on a method of Wells, who,
in his study of the topological structure of crystalline inorganic compounds (Wells,
1984), held that "in this subject, models [of the three-dimensional polyhedra] are
indispensable ...... (and]) are constructed quite easily from strips of thin card"
(Wells, 1977). That they might moreover be more easily distinguished, the
polyhedra of different shape were in this case made from differently coloured
strips of card, as shown in Plates 1 & 2.

Once their partition had been guessed it was not difficult to spot how such
polyhedra should be put together to obtain the topological form of the desired unit
cell and its resulting honeycomb. The geometrical characteristics of the
honeycomb on the other hand, being not fixed by its topology, were taken as they
chanced to turn out in the course of the construction, and were drawn only as
accurately as the illustrations demanded. These characteristics can be
subsequently modified as required by the phenomena, without affecting the
topology.

Varieties of the [6 5]{19 5 1} honeycomb: (26.19 = 355 + 1).

From Egs.(4), (7) & (8) it follows that N, and N; for these honeycombs are
proportional to 3x19 and 2x5 , i.e. to 57 and 10, respectively. N,, the number of
faces of its unit cell, is therefore proportional to 2(57 + 10), or 134.

In the honeycombs now to be described, 268 (= 2x134) faces are distributed
among 20 (= 2x10) variously shaped polyhedra as follows:

9 12-hedra (yellow) with a total of 108 faces
10 14-hedra (red) ot " 140
_1 20-hedron (blue) " _20
20 polyhedra with a total of 268 faces

These polyhedra have pentagonal and hexagonal faces only (Fig.1). Those with the
same number of faces are topologically identical, but their metrical characteristics
are not necessarily the same for each position in the unit cell.
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Fig.1. Schlegel diagrams of (a) 12-hedron, (b) 14-hedron, and (c) 20-hedron.

In Plates 1A and 1B the 20-hedron (blue) is viewed along its c-axis and a-axis,
respectively. To it are added six 14-hedra (red) as shown in Plate 1C; and to
these are added a further four 14-hedra as in Plates 1D and 1E. To the resulting
assembly of 11 polyhedra are added six 12-hedra (yellow) (Plates 1F and 1H), and
a further three 12-hedra as shown in Plates 1G and 1K. These 20 polyhedra
constitute the unit cell, which has hexagonal symmetry.




118 ;‘ ABOAV DA: CRYSTAL STRUCTURE - PART 2

As can be seen from these illustrations the 14-hedra are oriented in two ways: in
one their axis of symmetry is parallel to the a-axis of the cell ('vertical'); in the
other it lies along one of its c-axes ('horizontal'). These two kinds of 14-hedron
are hereinafter designated as 14v and 14h, respectively. Although topologically
equivalent they are not congruent.

In Plate 2A seven unit cells are joined to form, in the c-plane, part of a layer,
which is shown without its 12-hedra in Plate 2B. These layers, as we shall now
see, can be stacked to form a (6 5){19 5 1} honeycomb in three different
ways.

In the [6 5]{19 5 1} honeycomb of the 1st type the layers are stacked so as to
form columns of 20-hedra, with accompanying pairs of columns of 14-hedra (14v)
parallel to the a-axis. The columns are separated from one another along their
whole length by pairs of 14-hedra (14h) ; and the remaining, intervening spaces
are occupied by 12-hedra.

The three-dimensional arrangement of polyhedra in the resulting honeycomb is
made evident in Plate 2C, which shows a vertical stacking of unit cells without
their 12-hedra. A column of 20-hedra (on the left) and one of two columns of 14-
hedra (on the right) are clearly discernible; while the remaining column of 14-
hedra (at the back) is partly visible, through gaps in the unit cells left by the
missing 12-hedra.

l4v

Fig.2. Polyhedra in contact with (a) 20-hedron, and (b) 14-hedron (14v),
in columns of (6 5]{19 5 1} honeycomb of the 1st type.

The polyhedra in contact with the 20- and 14-hedra (14v) in this variety of the
[6 5J{19 5 1} honeycomb are shown schematically in Fig.2, where they are
represented by Schlegel-type diagrams. A number shown inside a polygon here
indicates the number of faces of the polyhedron that is in contact with the face
represented by the polygon; and, as in the standard Schlegel diagram, the number
that appears below the diagram refers to the face represented by its 'window'. One
of the above three columns consists, as we have seen, of 20-hedra in contact
with one another (Fig. 2a), while the other two are made up of contiguous 14-
hedra only (Fig. 2b).
* * *

Two further types of honeycomb are obtained, if in the stacking each successive
layer of cells is rotated through 120° about an a-axis.
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Plate 1
Honeycomb (6,5]{19 5 1}. Construction of unit cell.
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Plate 2
Honeycomb (6,5){19 5 1}. Assembling of unit cells.
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Plate 2D shows 6 unit cells, again without their 12-hedra, stacked as before, but
with the cells rotated through 120°, in opposite senses, at each successive stage.
This stacking again produces three columns of polyhedra: two consisting of pairs
of alternating 20- and 14-hedra (as seen on the left and the right of Plate 2D),
and one consisting of 14-hedra (14v) only (visible at the back through gaps in the
cells left by the missing 12-hedra). New unit cells comprising pairs of the original
ones are thus formed. Since these pairs of cells, too, 'fill' space, they may be
used to construct another, or second type of [6 5]{19 5 1} honeycomb.

The polyhedra in contact with the 20- and the 14-hedra (14v) in these new
columns of cells can again be represented by Schlegel-type diagrams. Two of the
columns consist of pairs of alternating 20- and 14-hedra, as represented in Figs.3a
and 3b; and the third column is made up of contiguous 14-hedra only, as
represented in the previous figure (Fig.2b).

20

Fig.3 Polyhedra in contact with (a) 20-hedron and (b) 14-hedron (14v),
in (6 5]{19 5 1} honeycomb of 2nd type.

Finally, plates 2E and 2F show 6 of the unit cells of Plate 1G and 1K (without their
12-hedra) stacked with the cells rotated through 120° in the same sense at each
successive stage, so as to form helical polyhedral arrangements, turning as a
right-handed screw (Plate 2E) or a left-handed screw (Plate 2F). In either case a
new unit cell, comprising in this case three of the original ones, is formed. As
before, these trios of cells 'fill' space and so give rise to another, or third type of
(6 5){19 5 1} honeycomb; but unlike the first two types this one with its screw
axis has a laevo- and a dextro-rotary isomeric form.

Here the arrangement of polyhedra is the same in each of the three columns, the
20-hedra being separated in each case by groups of four 14-hedra (14v) . The
polyhedra in contact with two of these 14-hedra, the 'end' ones of the group, are
as represented in Fig.3b, while those in contact with the other two, the 'middle’
ones, are as represented in Fig.2b. The contiguous polyhedra of the 20-hedra are
as in Fig.3a.
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As to the 14-hedron (14h), whose axis of symmetry is parallel to a c-axis of the
unit cell (Plate 1C), the arrangement of its contiguous polyhedra, represented in
Fig.4 by a Schlegel-type diagram, is the same in each of the three types of
honeycomb.

14h

o]

Fig.4 Polyhedra in contact with 14-hedra (14h),
in (6 5]{19 5 1} honeycombs of 1st, 2nd, & 3rd types.

It is tentatively suggested there may exist inclusion hydrates with the structure of
the above honeycombs; and it seems that one or more of them may aiready have
been identified (Ripmeester et al., 1987; Dyadin et al., 1991).

TOWARDS A MORE GENERAL THEORY

Since it may be objected that the theory at present applies only to inclusion
hydrates, it is proposed in the next instalment to show how Eq.(6) can be extended
to cover a wider range of compounds.

(to be continued)
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