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ABSTRACT

The connectivity of a complex porous medium is analysed by means of a set of serial
sections. From these data, geodesic propagations in different directions provide an esti-
mation of the distribution function of the local tortuosity of shortest paths in the medium,
while simulations of random walks give estimates of the effective coefficients of diffusion
at different scales and of their anisotropy.
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INTRODUCTION

The connectivity of a porous network controls its overall transport properties. Usually
global connectivity measurements are available from serial sections analysis, or from a
stereological estimation by means of appropriate random sets models. The aim of this
study, is to give a direct estimation of the tridimensional tortuosity and diffusion coeffi-
cients of a porous medium from a 3D image of a block of material.

IMAGES OF THE POROUS MEDIUM

A 110mm cylinder specimen of a porous medium was sectionned into 53 vertical slices
parallel to the axis of the cylinder (y vertical direction), with a 2mm spacing (= direction).
The horizontal direction is named 2. Photographs were made on the sections for further
analysis, and scanned into 8 bits digital images with (x,y) sizes ranging from 1000 x 900
to 2300 x 900 pixels. The distance between two pixels is 2 mm in the section direction
2 and 0.051 mm in the two other directions. The morphology of the solid and porous
phases is very tortuous.

The reconstruction of the tridimensional specimen required some preliminary image process-
ing. Irregularities in the grey level images, due to the marks of the saw used for cutting the
specimen, were filtered by estimation of a local drift on every vertical line. Photographs of
successive sections were matched by means of a translation maximizing their correlation
(the optimal correlation coefficient ranging from 0.10 to 0.45). The final data basis is a
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parallelipiped cut into the cylinder, made of 35 matched slices containing each 1436 x 636
voxels. The digital images are then converted into binary images where the pores and
the solid phase are separate. This is obtained in two steps: a first threshold enables us
to extract the extended porosities, while a morphological top-hat transformation (Serra
1982), followed by a threshold and a reconstruction filter provides the lamellar voids with
a higher reflectance.

3D GEODESIC PROPAGATIONS IN THE POROUS MEDIUM

In a first step, we are looking for the measurements of morphological properties describing
the connectivity and the tortuosity of the porous medium. This type of approach was
made in earlier studies, in two dimensions for the diffusion in polymer composites (Jeulin
et al., 1992; Gateau et al., 1994) and in three dimensions for the contact between rough
surfaces (Demarty et al., 1996) or for sintered materials (Demarty et al., 1997).
Propagation phenomena (light in optics, sound in acoustics, fluid in a porous medium,...)
with different propagation velocities in heterogeneous media, involve the existence of paths
(namely of percolation) across a specimen. For a valued graph, one can estimate (from
images in 2D or in 3D) the distance to a source on the valued graph, usually called the
geodesic distance (namely the length of shortest paths), and its probability distribution
function, characterizing the tortuosity of a network. In the present case, the connectivity
of the porous medium is studied by geodesic propagations from a source and a destination
made of two parallel faces. They enable us to calculate the distance of any point in the
volume to the source on a cubic graph and on a cubo-octaedric graph (Decker and Jeulin,
1997) with valued edges (1 in pores and 400 in grains). Points that cannot be accessed
during the propagation are located at the distance +oco from the source. From this
procedure can be detected closed pores in a specimen. In our situation, the open pore
volume fraction is equal to 0.200 while the total pore volume fraction is equal to 0.226;
the closed pores are limited to 12% of the total porosity. If the pores percolate through
the specimen, the geodesic distance between the two faces is finite. Its value, divided by
of their euclidean distance, is a measure of the global tortuosity of the porous medium,
while the distribution of geodesic distances inside the specimen or on the arrival plane
give details on the tortuosity of the whole shortest paths. This information is collected
in a few minutes on a Sparc SUN Workstation, using the XLIM software developped at
CMM (Gratin, 1992). To illustrate our results, we show in Fig. 1 the geodesic paths
of the specimen with the higher tortuosity (ranging from 1.8 to 2.2), which are localized
close to the center of the sample. In Fig. 2 are given the distribution functions of the
tortuosities obtained for the cuboctaedron graph in the z and y directions. As expected,
the propagation is more direct in the  direction (where the lower tortuosity is close to
1 and the larger is close to 1.4). In the y direction, the dispersion of the tortuosities is
much larger (they extend from 1.8 to more than 3.4).

DIFFUSION IN THE POROUS MEDIUM

Random walks: The diffusion of a fluid in the pores of the medium can be studied
by means of random walks generated from separate particles (Decker and Jeulin, 1997,
Tovena et al., 1998). During their walk, the particles follow a Brownian motion with
reflecting conditions on the pore walls. In our case, up to N = 100000 particles start at
time to = 0 from open pores located in an ellipsoid with axis r, = 300, r, = 100 and r, = 3,
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with uniform coordinates (zg, Yo, 20). At every time step, the current particle moves on
the cubic grid from the location (x(t),y(t),2(t)) to the location (2,1, 2') where every
new coordinates is obtained by a random choice according to the following probabilities
(if the new location is outside the pores, the particle keeps its location):

Ple'=z(t)+ 1] =p, Pl'=a(t)]=p, Pl'=2(t)-1=1~p, - p.,
Ply =y(t)+1=p, Ply=yt)]=p., Pl =y(t)—1=1-p,—p,
)+l =p. Pl =20)]=p, PlZ=2z(t)—1=1-p,—po,

The probabilities p;, py and p, are fixed and produce a bias in the trajectories of particles
as a result of a drift, similar to a main flow. For a homogeneous medium (free diffusion
of particles in pores), the reference coefficients of diffusion are given from

Dz:pa: Dy:py Dz:pz

Estimation of the diffusion coefficient from the variogram of trajectories: Asin
(Matheron, 1979; Jeulin, 1992), when a macroscopic Fick’s law is observed, the coordinates
Xi(t) (i =1,2,3) of the trajectory of the marked particle (starting from z, (;) at time
t = 0) in the random velocity field u(z) are diffusion stochastic processes with expectation
and covariance given by

E[Xl(t)] = Tg; + U;t (1)
E[(Xi(t) — o — Wt) (X;(t) — o; — Ujt)] = 2Dyt (2)

where #; is the average of the i component of the velocity, while the coefficients D;; build
the effective diffusion tensor of an equivalent homogeneous porous medium. Equivalently
for a single coordinate (e.g. z) we have the variogram 2v,(t):

27:(At) = B[(X(t + At) — X (1)) = 2D, At + w2 (At)?

The macroscopic coefficients %; and D;; obtained from averages of many particles trajec-
tories are valid for an equivalent homogeneous medium when are fulfilled the conditions
for a macroscopic Fick’s law to exist; these conditions are unknown in general. For some
random media (for instance for self similar, and therefore non stationary porous net-
works), Eqgs (1,2) are not valid, and a At® (with a # 1) behaviour is observed (this is
called anomalous diffusion). This can also be reinterpreted as a change of the coefficient
of diffusion with time (with an effective coefficient D ~ At*~!), and consequently with
the scale of observations.

Estimation of the diffusion coefficient from the distribution of sojourn times:
Additional information is obtained from the empirical distribution of the sojourn time 7
of the particle in the simulated field, F;, (¢). If we consider particles starting from O and
leaving the field at the abscissa a at time 7,, we expect in the case of a constant velocity
field (uz,u,) and in an infinite homogeneous medium:

F, (t)=P{r. <t) (3)
We have: X (t) > a = 7, <t and therefore

P{X(t) > a}

P{X(t)>a|T, <t} = 20

)
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Figure 1: Set of the shortest paths (tortuosity from 1.8 to 2.2) for the percolation in the
vertical direction y
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Figure 2: Histograms of the tortuosity obtained by geodesic propagations
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Figure 3: Results of the random walk simulations for the estimation of D,




ACTA STEREOL 1998; 17/1 111

If u, = 0, by symmetry we have P{X(¢) > a |7, <t} = % and in these conditions
Fr(t) = 2P{X(t) 2 a) (5)
When 4, >0 and a >0, P{X(t) > a|7, <t} ~1and
Fr,(t) = P{X(t) > a) (6)

In Egs. (5,6) the probability P{X(¢) > a) for a Brownian motion with the drift u, is

obtained by
+oo
1 (z — ugt)?
- (== ) 4
NZZIoX; l =P ( 4D,t > ’ @)

This method is interesting to estimate long time (and therefore large scale) coefficients of
diffusion, the particles being allowed to sample a large part of the specimen before they
leave the specimen. When closing the boundaries of the domain in one or two directions,
we can measure sojourn times 7, in the other directions (Decker and Jeulin, 1997).

This method was applied to the porous specimen, with the probabilities pg,_, Po, and po,
set to 0.20. Biased and unbiased (resulting into @ = 0) walks were used. For the sojourn
time distribution, a bias in the wanted direction is used (for instance p, = 0.4 —0.5). An
experimental variogram, and the cumulative distribution of sojourn times corresponding
to Eq. 7 are given for the y direction are given in Fig. 3. It turns out that the Fick’s
law is an approximation, the coefficient o differing from 1 in certain directions (in z and
mainly in y): we obtained after fitting the data ,(t) ~ 0.19t*% and ~,(t) ~ 0.38t%°.
Therefore at a small scale (2 — 4mm) the diffusion behaviour is ’underdiffusive’ with
respect to the Fick’s law, as a result of particles being trapped, and slowed in elongated
pores. In addition, the coefficients estimated by the two methods (variograms and sojourn
times) differ, since they are related to different scales, as illustrated in Tbl.1 (where the
errors correspond to the fit of the experimental curves). The coefficients of diffusion
increase with the scale of observation, the long range connectivity of the porous medium
appearing on the larger scale. The coefficient of diffusion D, is much lower than for the
other directions, mainly at the small scale. At the larger scale, it is nearly twice lower,
presenting the same coefficient of anisotropy as the tortuosity (the higher the tortuosity,
the lower the coeflicient of diffusion).

P{X(t) > a) =

Table 1. Estimated coefficients of diffusion

Fick’s law approximation  non linear variogram
D, small scale: 4 mm  0.13 £ 0.01 pizels? [T71] 0.14 +0.01 pizels? [T~
large scale: 70 mm  0.23 +0.05 pizels? [T}
D, small scale: 2 mm  0.025 £ 0.010 pizels® [T~1] 0.028 % 0.010 pizels® [T~]
large scale: 30 mm  0.11 £ 0.03 pizels? [T7]
D, small scale: 20 mm  0.09 4 0.03 pizels? [T7]
large scale: 70 mm  0.14 £ 0.02 pizels? [T}

CONCLUSION

The direct tridimensional estimation of the connectivity, the tortuosity and of the diffu-
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alternative, and more stereological way to simplify the experimental part of the study,
would be to first estimate from sections the parameters of a 3D random set model rep-
resenting the porous medium, and then to make the connectivity measurements on 3D
simulations of the medium.
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