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ABSTRACT

Classical reaction-diffusion models are studied with respect to their 3D aspects. Simula-
tions based on the coupled map lattice method are considered as nuierical experiments
which allow one to investigate the genesis of complex random structures and their evolu-
tion in time. Results are mostly presented under the form of realistic rendering of binary
structures by the application of a ray-tracing software. Specific properties of this class of
structures are also pointed out.

ey words: random media, reaction-diffusion. simulations, 3D.
INTRODUCTION

When kept far from thermodynamic equilibrin, chemical systems coupled with diffusion
show nonlinear behaviors and generate concentration patterns with a high organization
level (Turing, 1952: Nicolis aud Prigogine, 1977). Realistic textures, such as those on-
countered in natural phenomena (rocks. biological tissues,...) can he casily generated from
these models and therefore the assumption was made that a reaction-diffusion mechanism
is indeed at the origin of the observed patterns. However, there arve very few data about
their three-dimensional aspects in the literature, probably hecause of computational coni-
plexity (very small domains were used) and of obstacles to visualization. We give here an
overview of well known reaction-diffusion models and present results of three-dimensional
simulations.

REACTION-DIFFUSION EQUATIONS
On the macroscopic scale of a continmumn, the evolution of an N-species reaction-diffusion
model is ruled by the following general set of partial diferential equations :

JdZ; (. t) : L .
~ = div(Die) grad Zwe )+ FAZy. Zos s Zy) (1)
where the stndied varviables Z,; (. i) ave (he space-tinte dependent chemical concentrations
or densities of the different components. The F(Z,. ... Zy) term is a nonlinear function
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which expresses the reaction part of the model. In the case of a real reaction scheme,
the F; function - usually polynomial - is obtained from the basic stoichiometric rules and
involves the kinetic constants of the elementary reactions. When the diffusion coefficients
D; of the species are not space dependent, the diffusion term div(D;(x) grad Zi(a,t))
in Eq. 1 can be simplified to the more usual form D; A Z;(x,t). In the present case,
we impose initial conditions which correspond to a set of critical concentrations with the
addition of a small amount of uniform random noise. As a consequence, the Z;(x,t) vari-
ables are considered as random functions.

INPLEMENTATION ASPECTS

Reaction-diffusion simulations can be viewed as an application of the coupled map lattice
model (IKaneko, 1992). When dealing with large sets of 3D data (up to 15 billions voxels
in the present case), an optimization of the basic reaction-diffusion computation step is
really advisable. The processed domain consists in a set of N images of floating point
numbers, usually with periodic boundary conditions. First, the diffusion part is carried
out by an efficient. discrete Laplacian algorithm using a 3 x 3 x 3 convolution kernel filled
by only two different weights (1 — D; for the center point and D;/26 for all first and
second neighbors). This algorithm runs "in situ” - the output results are stored into the
same input domain — and takes the advantage of the structure of the cubic kernel to use
a shifting window (the compntation at point @ is partly based on the computation at
point . —1). This diffusion operator was tested successfully by the study of the Gaus-
sian dispersion of a punctual impulse, provided that 0.1 < D; < 1 to avoid numerical
instabilities. By introducing second order neighbors in the kernel, one also avoids a par-
ity (i.e. checkerboard) effect when D; = 1, which results from the decomposition of the
domain into interlaced independent sub-domains. The reaction part may be optimized
more classically by detecting common expressions in the Fi(Z;) functions and by the
factorization of terms. A parallel version (coarse grain type) of the simulation progrann
was also written, based on the MPI standard, and was run on a IBM-SP2 architecture.
The processed domain is simply shared in slices among several processors, whereas the
communications consist only in the synchronous exchange of the sub-domain boundaries
(2D images) at cach iteration. With 8 processors, the measured performance decreases
by about 17% in comparison with a sequential execution, and the computation overall
speed reaches 700 MFLOPS, which corresponds to more than 14 billion voxels per second.

VISUALIZATION

The simulation of 3D reaction-diffusion structures requires adequate space-time visualiza-
tion techniques. This point is crucial for a better understanding of the complex behavior
ol the models and of the observation of their particular morphology. In a first approach,
any section of the processed domain may he simply converted into a talse color 8-bit image
for cach species (scaling the concentration into a 0— 255 discrete range). In the same way,
the sides of the computed domain can be mapped onto a 3D parallepipedic volume. How-
ever, reaction-diffusion patterns are also about to be transformed into binary sets by the
selection of concentration ranges. since they usually consist in domains of homogeneous
concentration.  This step allows us to apply a ray-tracing software, namely Persistence
of Vision (POV-Ray, 1996) to produce realistic renderings of the structures, using some
given view point, illumination, texture, and projection parameters. Each voxel which
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belongs to the surface of the binary set.to be represented is simply added to the tracing
instructions. Additional smoothing is computed by the rendering software, and is based
on the contributions of radial fields centered in each voxel, namely a blob primitive. This
kind of smoothing is well adapted to reaction-diffusion structures. Finally, the model
evolution in time is taken into account either by the editing of video sequence (built from
images generated every 6t iterations), or by the creation of some spatiotemporal images,
where one of the coordinates represents time and the other gives the concentration value
along a selected profile of the domain.

SCHLOGL MODEL

The Schlégl model (Schlégl, 1972) describes a quite simple three-species chemical scheme,
based on four elementary reactions. One can reduce this system to a single species scheme,
where the chemical reaction term is a polynomial of degree three in the concentration of
the single species, leading to one unstable steady state Z = ap and to two stable states
Z =ay and Z = ay, with a1 < g < as. Actually the model follows the reaction-diffusion
equation (RDE) :

230 = DAZ + ky — b Z + ko 22 — hy 2

ED

with ko =0.002, k; = 0.0390, ky = 0.07125, k3 = 0.030625 @)
Such a nonlinear dynamics is at the origin of an auto-catalytic behavior. When the system
is initially set in the unstable state ao with the addition of random noise, a bifurcation
occurs. At a macroscopic level, spatially organized parts of the domain fall over either one
of the stable states, as shown in Fig. 1. These spherical type regions are growing, but it
should be noticed that coalescence phenomena occur and modify the medium morphology.
Finally, one state invades the whole domain. In two dimensions, similar random textures
have already been simulated using a cellular automaton (Dab et al., 1990) or a lattice gas
automaton (Decker and Jeulin, 1996).

TURING STRUCTURES

The class of reaction-diffusion models which are at the origin of Turing type structures
(Turing, 1952) is by far the most studied and the larger one. It appears that at least a
two-species chemical scheme is required to produce such complex structures, in relation
with a nonlinear dynamics. In particular, when the diffusion coefficients of the two species
are different enough, the chemical reactions generate some stationary concentration het-
erogeneities (i.e. coexistence of homogeneous domains with different concentrations),
showing a macroscopic and semi-regular spatial organization. More precisely, one of the
species involved acts as an activator with diffusion coefficient D,, whereas the other com-
ponent acts as an inhibitor with diffusion coefficient Dy > D; and hinders the spreading
of the slower activator by its chemical action. The resulting patterns show a very low
evolution rate and are therefore considered to be quasi-stable. Depending on the model,
but also on its parameters and the initial concentrations, Turing structures show various
semi-regular geometries, like pseudo-periodic tessellations, or stripes (Borckmans et al.,
1992). To illustrate this class of models, we review here different RDEs, and we propose
at least one three-dimensional representative realization, using a given set of parameters.
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Fig. 1. Schligl model: evolution with time. Binary structure: threshold Z(z,t) > 1.45.
Initial conditions: Z(z, = 0) & 0.75556. Domain size: 250 x 250 x 250.
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Fig. 2. Turing structures: symmetrical model. « = 1.0, 8 = 1.0, Dy/D; = 3. Binary
structure: threshold Z;(z,t) > 2.20. Initial conditions: Z;{x,t = 0) ~ 1.0. Domain size:
200 x 200 x 200.

£ 18 2 22 24 26

{a) Threshold: (b) Spatio-temporal plot of Z,(z,t) (false colors).
Zy(x,t = 50000) > 3.7 Time is running to the right, from ¢ = 0 to ¢ = 42000.
Fig. 3. Brusselator model. o = 2.3, 3 = 3.4, Dy/D; = 8.0. Initial conditions:

Zy(w,t = 0) = 4.5, Zo(w,t = 0) = 1.5. Domain size: 200 x 200 x 200.
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Symmetrical model. This system, studied by Walgraef (1988), offers a nice example of
a Turing structure formation. It is based on the following RDE :
(248

ot DIAZI + f(ZlaZQ)
%th = DQAZQ = f(Zl,ZQ) (3)

(21,2) = 82,2 — o 2y

Il

|

Fig. 2a shows a binary structure resulting from a 3D simulation. We highlight the in-
teresting property that this type of structure is fully interconnected (a unique connected
component). Moreover, it appears that such a structure is well suited for modeling some
kinds of porous media. Thus, as an example of advanced measurements, the tortuosity
distribution (Decker et al., 1998) was estimated on the binary structure for the presented
realization (Fig. 2b). In addition, anisotropic structures can be obtained by introducing
a linear drift in the diffusion process, as shown in Fig. 2c. A similar extension of this
model was proposed to simulate dislocations in metals (Walgraef et al., 1987).

Brusselator model (Prigogine and Lefever, 1968). This classical reaction-diffusion
model is very close to the previous one. The equations involved are:

% = DANZ + a— (B +1)2 + 2,22,
% = D,NZy + B2 - 7% Z,

ot

(4)

Very regular structures can be obtained by the Brusselator, but with some randomly lo-
cated defects or deviations. Fig. 3a gives an example of such structures in 3D, which can
be compared with a random set based on the implantation of spherical primary grains
with a repulsion distance (namely, a hard-core model). The spatiotemporal image pre-
sented in Fig. 3b gives the evolution of a profile of this realization.

Maginu model (Maginu, 1975). In two dimensions, this model is, in particular, at the
origin of maze-like patterns, with a high tortuosity — in this case, a geodesic propagation
algorithm is obviously very useful to look for a crossing path, i.e. to detect the possibility
of percolation. The RDE takes the following form:

{

For a higher dimension, we also obtain such intricate structures, as shown in the realiza-
tion presented in Fig. 4a, which looks like a very branched three dimensional network
(the structure is totally interconnected). The distribution of the concentration Z; evolves
principally during the genesis of the structure (at the beginning of the simulation), as
shown in Fig. 4b.

=DiAZ + -8 _7
=Dy ANZy + Z%z

(5)

SN

COMPLEX GINZBURG-LANDAU EQUATION

This last model was selected to give an example of reaction-diffusion structures with
a very different morphology. The complex time-dependent Ginzburg-Landau equation
describes the evolution, following a Hopf bifurcation, of the slowly varying modulations
in an extended system. Many numerical studies in one or two dimensions (see for in-
stance I{uramoto, 1984) have heen published about this famous model, which arises from
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Fig. 4. Maginu model. k& = 0.9, ¢ = 0.45, Dy/D; = 6. Binary structure: threshold
Zy(x, t) > 0.60. Initial conditions: Z;(z,¢ = 0) ~ 0.0. Domain size: 200 x 200 x 200.

(a) Zy, sides in t=2000 t = 10000
false colors (b) Binary structure: threshold Z,(z,t) > 0.90

(c) |Z], sides in (d) Threshold |Z[* < 0.18, () Threshold |Z|* > 0.93
false colors 3 connected components

Fig. 5. Ginzburg-Landau model. £ = 2000 (when not specified), a = 1, 8 = 1, 7 = 1,
& = 1.122. Initial conditions: Z;(z,t = 0) = 0.0. Domain size; 200 x 200 x 200.
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the analysis of numerous physical situations like hydrodynamic flows, nonlinear optics, or
uncommon cases of chemical systems. This RDE can be viewed as a two-species scheme :

% =DAZ + AZ-B|Z’z

at
Z=271 + i 2, (6)
with A=a + iy
B=pg +i6

This equation admits spiral wave solutions, with oscillating and rotating behaviors. In
Fig. 5a and 5b, resulting from a 3D simulation (starting with a white noise as initial con-
ditions), one can clearly notice the presence of a population of spiral structures. Moreover,
some other interesting features are also to be found in the image of the modulus |Z|* (Fig
5¢). On the one hand, a low level threshold gives the minima of the modulus, which form
worm-like structures (Fig. 5d), more precisely a population of interlocked tori. These
minima correspond to the ”axes” of the spiral structures. On the other hand, a high level
threshold allows one to detect the boundaries of a population of cells (Fig. 5e), where
one can verify that each cell contains a unique spiral structure. Actually the worm-like
structures represent the skeleton of the cells, which are also of toric morphology. Dur-
ing their slow evolution, these cells interact, with attraction phenomena, and in some
cases collapse (reducing progressively the number of cells). When a cell collapses, its
volume is gradually filled by its neighboring cells, determining in this way zones of in-
fluence. The consequences of the periodic boundary conditions are still to be investigated.

CONCLUSION

From the 3D reaction-diffusion simulations, with a large range of morphologies, it is
possible to generate interesting realizations of random media. Their morphological prop-
erties, still to be studied in details, can be directly measured in the three-dimensional
space from the simulations. This will be of great help for practical applications of these
models.

REFERENCES

Borckmans P, De Wit A, Dewel G. Competition in ramped Turing structures.
Physica A 1992; 188:137-157.

Dab D, Lawniczak A, Boon JP, Kapral R. Cellular-automaton model for reactive
systems. Phys Rev Lett 1990; 64:2462-2465.

Decker L, Jeulin D. Texture simulation by lattice gas from reaction-diffusion models.
Microsc Microanal Microstruct 1996; 7:565-571.

Decker L, Jeulin D, Tovena I. 3D morphological analysis of the connectivity of a porous
medium. In the same volume, 1998.

Kaneko K. Overview of coupled map lattices. Chaos 1992; 2(3):279-282.

Kuramoto Y. Chemical oscillations,waves,and turbulence. Berlin: Springer-Verlag, 1984.

Maginu K. Math Biosci 1975; 27:17. J Differential Equations 1978; 31:130.

Nicolis G, Prigogine 1. Self-organization in nonequilibrium systems. New York:
Wiley, 1977.

POV-Ray. Persistence of Vision (tm) ray-tracer software. User’s documentation, 1996.
See web site at WWW. povray. ory.



254 DECKER L ET AL: 3D SIMULATIONS BY REACTION-DIFFUSION MODELS

Prigogine I, Lefever R. J Chem Phys 1968; 48:1695.

Turing AM. The chemical basis of morphogenesis. Phil Trans Roy Soc London 1952;
B237:37.

Schlogl F. Z Phys 1972; 253:147-161.

Walgraef D, Schiller C, Aifantis EC. Reaction-diffusion approach to dislocation patterns.
In: Walgraef D, ed. Patterns, defects and microstructures in nonequilibrium
systems. Dordrecht: Martinus Nijhoff, 1987:257-269.

Walgraef D. Instabilities and patterns in reaction-diffusion dynamics. Solid State
Phenomena 1988; 3-4:77.

Presented at the 7th European Congress for Stereology, Amsterdam, April 20th to 23rd, 1998.




