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ABSTRACT

Transmission electron microscopy is used for observations of nanocomposite materials.
Measurements from such micrographs can be affected by a bias error due to the thickness
of specimens. A method of correction of volume fraction and covariance measurements
is proposed. It leads to the description of the morphology of the composite in terms of
random sets.
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INTRODUCTION

The morphology of carbon polymer composites containing spheres with 38nm diame-
ter (see Fig. 1a) has to be studied through transmission electron microscope observations
by means of slices with a thickness close to 50nm. To make a quantitative morphological
analysis, we have first to correct measurements from the error introduced by the thickness
of specimens, which cannot be neglected as compared to the size of the individual objects
(a typical overestimation of 300% is achieved for an underlying volume fraction of less
than 10%). A theoretical correction is proposed, assuming that the carbon aggregates
builds a boolean random set. The validity of the procedure of correction is tested by
means of simulations and by measurements on materials specimens. Finally, we generate
simulations of 3D texture of the studied composites, starting from a random model of
texture, the parameters of which being directly estimated from measurements made on
thick specimens.

MATERIAL AND METHODS

The material investigated here is a carbon black (CB)/epoxy resin composite. The nom-
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(a) (b)
Fig. 1. (a) TEM micrograph of the composite material; 5.0um x
4.4pm. (b) resulting binary image after image analysis framework:
CB particles are in black, resin matrix in white.

inal volume fraction of CB particles is 2.8%. Due to the size of the CB particles (Printex
EX2, 38nm diameter), the composite observations were performed by transmission elec-
tron microscopy (TEM) (Philips EM 430 operating at 200 kV). Transmission microscopy
requires preparation of thin sections. Sectionning was performed by a microtome at room
temperature. An OmU?2 Reichert-Leicart design ultramicrotome was used to obtain sec-
tions for TEM (45 & 2nm thickness, as measured in the TEM). This thickness cannot
be neglected as compared to the size of the CB particles. Therefore a correction has
to be developped, based on a random set model. Seventy two TEM micrographs of the
microtomed sections of the composite material were digitaly scanned. The images have a
1002 x 870 pixels size, and 256 grey levels (Fig. 1a). Then image analysis was performed to
extract CB particles. The image analysis framework was the following : sequential alter-
nate filter, top hat and threshold. Finally, binary images are obtained: polymer matrix in
white and CB particles in black (Fig. 1b). On the binary images statistical measurements
are performed (volume fraction p*, covariance function Q*(h)), and averaged over all of
the images. The measured volume fraction of the studied material (p* = 0.0758) has to be
compared to the known value ( p = 0.028); a theoretical correction of the overestimated
value is proposed.

THEORETICAL THICKNESS CORRECTION

Principle of the thickness correction

Fortunately the handicap of working with thick sections can be overcome, at least for
compact convex sets. Consider the section of a set X taken by a slice with thickness e,
and the projection of this section on one of the faces of the slice, namely the plane II.
In Fig. 2 is shown that studying the projection of the thick section is equivalent to first
dilate X with a segment of size e normal to the section and then studying the section of
the dilate X @ e by plane II (X & B denotes the dilation of X by B). A correction can be
developped, provided the volume fraction of X @ e was calculated for the Boolean model
(Miles et al., 1976; Matheron, 1976; Serra, 1982).

Thickness correction on measured volume fraction
In this section, we consider that CB particles build a boolean random set of spheres in the
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matrix. We call A’ the spherical primary grain of radius R. The random set A = {J Al
represents the CB particles with the volume fraction p, and the complementary set A”
represent the resin, with the volume fraction ¢ = 1 — p. For a boolean model, ¢ and the
probability Q(K) = P{K C A°} are given by (Matheron, 1967),

g = exp [—6n Jin (A')] (1)

QK) = exp [~6,.71,(4' © K))] (2)

where 6, is the Poisson density of the process in the n dimension, 7,(A4’) denotes the
average Lebesgue measure of the grain A’ in R™ (in practice, n = 3). On micrographs is
estimated the apparent volume fraction p* = 1 — ¢*. Noting A” = A’ @& e, we have

" = exp [0 1, (A")] 3)
eliminating 6, from equations (1) et (3), one gets:
Fiz(A”)

g = g4 (4)

For a sphere of radius R,
— ’ ' 4 3, — " ! 4 3 2
(A =v(4) = EWR i E3(A") =V(A de) = §7rR +emR

Consequently,

1
3e

g= q* I+ 4R ( 5)
So, from the measured volume fraction ¢*, one can estimate the real volume fraction q by
a corrected volume fraction g, (Eq. 5). This correction is subject to the assumption that
the particles build a boolean model of spheres of known radius R, given the thickness e.
In Fig. 3 is given the corrected volume fraction p, depending on the measured value p*
and on the ratio e/R: the corrections due to the thickness of the microtomed section are
significant. We have to point out that for a boolean model, it is theoreticaly possible to
estimate the two values R and e from Q*(K) = Q(K @ e), using for K a segment with
length [ and a square with size a. Unfortunately, a small error on the two last measures
involves significant instabilities on the estimated values (Savary et al., 1997). This method
cannot be used in practice, and e is estimated from direct measurements.

Thickness correction on the measured covariance function
The covariance function Q*(h) is estimated from the images, starting from K = {z,z+h}
in Eq. 2. This has to be compared to the covariance Q(h) of the boolean model:

Q(h) = exp[—0s7i5 (A’ @ h)] (6)
Q" (h) = exp[-0s7i3 (A" & h)]
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Table 1. Thickness correction on simulated thick sections of boolean random
sets (BRS) of spheres.
Simulated Parameters . Relative
Boolean Models of the simulations p p Pe error
BRS n°1 p=0028 R =d5pizels | 1050 | 00788 | 0.0286 | 2%
e = llpizels
BRS n°2 p=0028 R =85pizels | 009 | 00551 | 0.0283 |  0.5%
e = llpizels

We note K 4 (h) the geometric covariogram of a R diameter sphere:
T3(A' @ h) = 13(A"U A}) = 2K (0) — K (h)

Since A” is made of the union of two hemispheresv and of a cylinder of radius R and of
height e (Fig. 2), we have, noting (R, h) the reduced geometrical covariogram of the disk
with radius R:
KA”(h) = KAI (h) + 67'['.R27'(.R7 h)

2 h h h
= — _) = — _ (—)2 <
r(R,h) W[arccos(2 ) 5 2R) ] for h < 2R, else 0
and consequently, the covariance function Q(h) can be estimated from the measured
covariance Q*(h):

3e
Q(hgiR 2~ rBR) k<R (7)

3e
Q'(h) = Q(h)q2R, for h> 2R

Q" (h)

VALIDATION AND GENERALISATION

Validation on simulations of a boolean model of spheres

In order to validate this thickness correction model, 3-D images of boolean models of
spheres were generated. Parameters of the simulations are closed to experimental carac-
teristics of the material. Volume fraction and covariance measurements were performed
on twenty images of thick sections of these simulations. Then a thickness correction is
performed. Table 1 gives parameters of the simulations, the real volume fraction of sim-
ulations, p, the measured volume fraction on thick section simulations, p*, and corrected
volume fraction, p,. The volume fraction correction is efficient; the relative error is rather
low. In the same way, the correction applied to the covariance function is efficient; the
corrected curves fit perfectly the theoretical ones.

Generalisation to more complex structures

These thickness corrections are tested on more complex structures. Two scale random sets
are simulated (A = A; N Ay), in order first to describe more realistic microstructures, and
to test the limits of the procedure outside the range of its elaboration. The intersection
of two boolean random sets are simulated with different parameters given in Thl. 2. The
proposed thickness correction, developped for a simple boolean model, can be applied
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Table 2. Thickness correction on simulated thick sections of the intersection
of two boolean random sets (IBRS) of spheres.
Simulated two Parameters R Relative
scale models of the simulations p P Pe error
p1 = 0.2 Ry = 9.5pizels
IBRS n°1 p2 = 0.2 Ry = 35.5pizels | 0.0420 | 0.0759 | 0.0414 1.5%
e = 1lpizels
p1 = 0.2 R, = 4.5pizels
IBRS n°2 p2 = 0.2 Ry = 35.5pizels | 0.0412 | 0.1049 | 0.0383 ™%
e = llpizels
p1 = 0.2 R, = 9.5pizels
IBRS n°3 p2 = 0.5 Ry = 35.5pizels | 0.0990 | 0.1799 | 0.1007 1.5%
e = 1lpizels

to the volume fraction in more general situations. The covariance correction cannot by
applied, since its theoretical expression is unknown for multiscale models. We made the
following simplification: the dilation affects only the smallest scale A;. In that case, the
measured covariance is given by:

Q" (h) =2¢" — 1+ (1 - 2¢7 + Q1 (h))(1 — 2g2 + Qx(h)) (8)

with ¢* , Q*(h), ¢, Q3 (h), g2 and Q,(h) deduced from Eqgs 1, 3, 6 and 7. It turns out that
eq. 8 gives a very good approximation of the measured volume fraction and covariance,
at least when the ratio e/ R remains low.

APPLICATION TO THE MORPHOLOGY OF A COMPOSITE

Application

The volume fraction correction (Eq. 5) allows us to recover the real volume fraction of
the material (p. = 0.0280). The experimental covariance function was compared to the
covariance function of a boolean model of spheres A; of radius R = 19nm. This simple
model only describes the beginning of the experimental curve. A better fit for the larger
scales, is obtained from more complex models. In the first step, we introduce a second
scale Ay (a boolean model with a population of spheres), and we define A = A; N Ay
or A= A;N A5 In a second step, a third scale A3 (boolean model with a population
of spheres) is added and combined in the same way to the other scales. Fig. 4 shows
the comparison of the covariance function measured on the composite images with three
models (Tbl. 3), obtained with the best fit. The three scale model is interpreted as follow:
the first scale describes the CB particles; the second one builds the aggregates of CB; the
last one describes the areas free of CB particles, and by complementarity, the aggregate
network (Fig. 7).
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Table 3. Description of some tested models and their fitted parameters (single
radius SR, exponential law EL).

Theoretical Scales Primary grains Volume
models Sphere Populations fractions
Model 1 Al SR R1 = 19nm p1= 0.028

. A SR R, = 19nm p; = 0.368

Model 2 AN A A | EL  E(R,) = 38mm @ = 0.105
A SR R; = 19nm p; = 0.352

Model 3 AiNA; N A Ay SR Ry, = 60nm po = 0.520
A$§ EL E(R;) = 65nm g3 = 0.153

Validation of the correction from simulations

Twenty images of thick sections were simulated with model 3 parameters (see Fig. 5 and
Tbl. 3). The proposed thickness correction is applied. The volume fraction is underes-
timated with a 10% relative error which is statistically correct owing to the number of
simulated images. The covariance remains well described (Fig. 6), and the morphology
of thick sections is well reproduced (compare Fig. 1b to Fig. 5).
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Fig. 4. Covariance function @Q*(h): (¢) mesured covariance on composite binary images,
(=) ajusted theoretical covariance function (see Table 3).
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Fig. 5. Simulated thick Fig. 6. Covariance function Q*(h): Fig. 7. Simulated 3-
section of model 3 (see (o) mesured covariance on simulated D image of model 3 (see
Table 3). thick sections of model 3 (Fig. 5), Table 3).

(—) covariance function of model 3

(see Table 3).

CONCLUSION

We have proposed a theoretical procedure to overcome the handicap of working with
thick sections. Based on boolean random sets, it allows us to correct measurements such
as volume fraction or covariance from the error introduced by the thickness of the micro-
tome sections. The proposed procedure can be used for more general textures than the
boolean model, such as multiscale models. We applied this thickness correction to the
experimental covariance of the composite material to caracterise its morphology in terms
of multiscale random sets.

Modeling composite microstructures by means of random sets is a useful way to sum-
marize microstructural information. Morphological models are available to simulate the
3D geometry of two phase composites (Fig. 7) and to predict their macroscopic physical
behaviour (Jeulin and Savary, 1997).
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