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ABSTRACT

In the first part of this paper a recent discovery is
reported of an early use of the term 'STEREOLOGIE', completely
different from the current one. The rest of the paper constitu-
tes an informal account on the recent evolution of stereology,
notably on the estimation of particle number, mean size and
size distributions. Perhaps the main conclusion reached in
this paper takes the form of a good advice given by the late
Hans Elias in his After-Dinner talk at the Second International
Congress for Stereology (Elias, 1967): "It is up to us stereologists
to keep our eyes and ears open ...

Keywords: disector, number, particles, selector, size distri-
butions, unfolding.

INTRODUCTION

This paper constitutes an informal account of some histori-
cal notes on the one hand, and of personal reflections and
viewpoints on the state-of-the-art in the stereology of parti-
cles on the other.

The main historical note (next section) might convey some
perplexity, even a bit of disillusion - mild, I hope! - to many
stereologists. I tend to imagine, however, that Hans Elias
himself would have seen the note with more excitement and
curiosity than disappointment. In order to illustrate the
sportsmanlike attitude of H. Elias, let me quote the following
paragraph from his Introductory Remarks to the First Interna-
tional Congress for Stereology, in which he refers to another
Honorary Member, also Founder of the ISs, who, alas, also left
us recently:

""One day an anatomical mathematician from Munich
asked me in a very polite letter whether | would resent
if he published a correction to one of my papers which
dealt with the percentage-wise distribution of axial
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ratios of ellipses, that resulted from cutting randomly
distributed cylinders. This man was August Hennig which

| should properly call the father of our society. | was
not only surprised that there should be another person

who played with the geometry of sectioning, but | was

glad to have found a man who had a deeper understanding

of this field than I. And it came about that August Hennig
and | became very close co-workers."

(Elias, 1963)

Thus, after some hesitation I decided to include the following
note in this article.

ARE WE SURE WE ARE DOING "STEREOLOGIE"?

A few lines below the paragraph pin-pointed above, Hans Elias
wrote the following: .
"... | believed that people who do such things should get
together. And | announced an informal conference on
spatial interpretation of sections on the Feldberg two
years ago. At that conference this society was establish-
ed and, with the aid of a Greek pocket dictionary, we
coined the word Stereology after we had convinced ourselves
by telephone calls to the Freiburg University library that
this word had not yet been used before." ‘
(Elias, 1963)

If at all needed (which I do not imagine) the sentence I have
underlined above would be exonerative enough for H. Elias!

My attention has recently been called to an amazing discove-
ry made by the East German mathematician Dietrich Stoyan, from
Bergakademie Freiberg, sometime last year. It transpires that,
among some items obtained by inheritance, Dr. Stoyan came
across a copy of a German 'Handbook of Foreign Words' (a sort
of dictionary of words adapted from languages other than German,
of technical terms, etc.), compiled by Friedrich Erdmann Petri
and published in Gera (now DDR). Apparently, Stoyan's copy was
published in 1899. Last June, I made separate enquiries at the
DeutschesSeminar of the University of Berne, and I was shown
a copy of Petri's dictionary dated 1897 - see Fig. la. Yet, the
book I borrowed was the 20th reprinting of the 13th edition!

I know that the 2nd reprinting of the 13th edition was publish-
ed in 1889 but, for the time being, I have not searched yet the
publication date of the 1lst edition.

At any rate, Dr. Stoyan must have been fairly surprised, as
I was, when looking into p. 836, the relevant fragment of which
is reproduced in Fig. lb. The term STEREOLOGIE is defined there
as:

"'Science of crosses, interpretation of all kinds
of crosses on coins, emblems and documents.'

(Petri, 1897)
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(a) (b)

Figure 1. Reproductions from the 20th printing of the 13th
edition of Petri's dictionary, (1897). (a): title
page. (b): a fragment of p.836. Note that the
second entry reads "Stereologie".

Thus, it seems that "Stereologie" was the name of a discipline
dealing with the interpretation (e.g. of authenticity, of pro-
venance, etc.) of seals, motifs or identification marks stamped
on coins, messages, official documents and items of diverse
kinds. As such, it is therefore not unlikely that the 'art'
itself already existed back in the Middle Ages, when a certain
symbology played an important role in everyday life (the icono-
graphy and architecture of the time, for instance, abound in
such meaningful symbols, many of which resist interpretation
nowadays) .

Curiously, the term "Stereotomie", visible also in Fig.lb,
has more to do with what we understand today by stereology
than the actual term "Stereologie"! After all, "Stereotomie”
dealt with "sections through solid bodies"...

Much later (as far as 1932) William R. Thompson, from the
Department of Pathology (Yale University), proposed the term
"pProjectometry" for what we currently conceive as stereology-
but we shall come back with W.R.Thompson in a moment.

Independently of the foregoing notes, I personally feel that
the actual choice of the name of our discipline was nice and
well chosen. I only come to wonder what will people understand
by "Stereology" in one or two hundred years, however!
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COUNTING AND SIZING PARTICLES: 'STATE OF THE ART' AND APOLOGIES

Particle number

The concept of 'number' is very primitive indeed: children
start counting objects fairly early. It is not surprising,
therefore, that the first 'stereological' question made by many
people about cells, granules, or whatever particles they want
to look at tends to be "how many" are there.

Confronted with the limitation of having to observe cell
transects instead of the cells themselves, however, the stereo-
logist traditionally resorted to 'indirect' methods (commonly
known as 'unfolding methods') in order to estimate cell size and
number in three dimensions from two-dimensional measurements.

By now, terms such as "Wicksell", "tomato salad" or "Swiss cheese"
problems will be familiar to many readers (if only as responsible
for some headaches!).

The main assumptions underlying unfolding methods concern
particle shape and, in more 'state of the art' methods, a precise
modelling of the distorting effects of section thickness, notably
overprojection (traditionally known as 'Holmes effect') and
truncation (i.e., loss or unobservability of grazing particle
transects). For all this machinery to work, however, the parti-
cles must unfortunately be spheres (with very limited concessions,
€.g. perfect disks or perfect and parallel solids of revolution).
Unfolding methods must therefore yield biased results in general,
if only because the underlying assumptions never hold exactly in
practice.

Even if the relevant assumptions held. 'reasonably approxima-
tely' in practice, two serious snags remain. Firstly, and from
a strictly mathematical viewpoint, the unfolding problem is
known to be numerically 'ill-posed'. The problem has attracted
(and is still attracting) the interest of many mathematicians
for more than sixty years. The sixty-odd references listed in
Cruz-Orive (1983), for instance, represent the best tries among
very many and yet, no satisfactory, mathematically stable solu-
tion has ever been found which will work in all cases. The
second snag is one of efficiency: in the best of the cases the
investment in time and effort required to reach a moderate
stability in the solution will be too high.

We knew all the above for years - hence, the best recommend-
ation we could give to practical stereologists was: "look again
at your problem, and try to re-define the required answer so
that you do not need to count!" Yet, of course, counting the
things, (or, still worse, knowing their size distribution preci-
sely) would be absolutely essential to many people - hence
I felt encouraged myself to enlarge the already long list of
'unfolders' yet again by writing the 1983 paper.

Perhaps the heart of the matter lies in the fact that the
mathematical problem is ill-posed just because the physical
one is unnaturally posed. For countless years, embedded particles
of all sorts have been silently begging to be counted in the
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natural manner! The publication of the 'disector' method
(Sterio, 1984) has placed us again in a position we should
have occupied for many years (at least since 1932, as we shall
see). Thus, with rare exceptions we are now glad to hear our
clients saying that they want to count things!

In May 1985, on the occasion of the Course in Morphometry
and Stereology in Neurosciences held in Amsterdam, Hans Jgrgen
Gundersen showed in a slide the first page of the paper by
W.R. Thompson mentioned in the preceding section (Thompson,
1932). As reported by Gundersen (1986, section 7) this short
paper of Thompson describes in a precise, lucid way the following
concepts: (i) The associated point rule for assigning a particle
to an arbitrary portion of space, as a prerequisite for establish
ing any direct unbiased counting rule (Miles,1978); (ii) the
'serial stack' method published also 48 years later (Cruz-Orive,
1980) for estimating particle number, and (iii) the essentials
of the disector device, re-discovered and improved by Sterio
(1984) .

As soon as I saw the mentioned slide, I was almost sure I had
seen that paper before. On returning to Berne, I soon found the
photocopies of both Thompson (1932) and Thompson el al (1932),
carefully stapled since my Sheffield years (maybe around 1975)
and deposited in a pool of papers deemed of 'lesser importance’'.
In fact, at the time I came across Thompson's papers I was more
interested in the 'exciting' mathematical challenge offered by
unfolding-like stereological problems than in solving the real
problem of counting. I vaguely remember having set the first
paper aside as soon as I discovered that Thompson was resorting
to serial sections - this looked 1like cheating to me! Subcons-
ciously, I was probably convinced that no 'faithful stereologist'
should ever use three-dimensional probes!? I do not think, however,
that I can blame the 'official! definition of stereology for this.
Indeed, I should have been reminded at the time of a closing
remark made by H. Elias in one of his papers:

"It is up to us stereologists to keep our eyes and
ears open to reports on inexplicable phenomena. Maybe
we shall be able to help our colleagues in other
disciplines through our training in extrapolation.'

(Elias, 1967)

At any rate, people could have started counting embedded particles
properly as early as 1933 and, out of the 52 years "lost", I tend
to feel a bit responsible for the last ten or so.

Quite a similar thing has happened to me regarding the
'fractionator', recently described by Gundersen (1986). A few
weeks ago, while looking for a paper by Eva Jensen, I lazily
browsed at another reprint lying in the same folder, namely
Jolly (1979). The author - whom I know since 1970 - sent this
reprint to me shortly after we met again at a statisticians'
meeting in Brighton, 1980. In the mentioned reprint, the
fractionator principle (in all its generality) and some statis-
tical properties of it, are precisely described. Here it was
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actually a 'colleague in other discipline' (statistical ecology,
as a matter of fact) who was instead offering his help to the
stereologist, but the latter did unfortunately not keep his 'eyes
and ears' open enough once again!

Mean particle size

It is by now fairly clear that we can estimate the number
of arbitrary particles in an embedding medium relatively easily
(at any rate with practically no ‘'algebra' at all), very
efficiently and unbiasedly, irrespective of particle shape and
orientation, overprojection and truncation - anyone who has
faced unfolding problems before knows the value of the preceding
statements.

An unbiased estimate of particle number, however, does in |
general not guarantee the unbiased estimation of mean individual |
particle volume or surface area, for instance. 1In fact, the ‘
estimates of the numerators of the relevant relationships

vy = VV/NV and sy = SV/NV from a section are unfortunately

not free from the bias caused by our old enemies, namely
overprojection and truncation. The same remark applies, to
various degrees, to the long list of size estimators now
available (see for instance Gundersen, 1986, Table 1). 1In
passing, one cannot avoid mentioning the 'mean particle volume-
weighted volume' v_, which enjoys the distinct privilege of
being estimable directly on independent sections without resort-

ing to the knowledge of N_. The relevant measurements are
'point-sampled intercepts' ' (Gundersen and Jensen, 1985, see
also Cruz-Orive and Hunziker, 1986, Fig. 10). Most point-sampled

intercepts actually tend to fall near the equatorial part of the
particles, so that the estimate of v is one of the mean particle
size estimates least affected by overprojection and truncation
artifacts.

Having removed the bias inherent in any shape assumptions,
the impact of the aforementioned bias upon mean particle size
estimates should be of lesser importance in most cases, however,
and it can often be reduced almost arbitrarily by a careful
control of observation conditions, notably by reducing section
thickness. Trouble arises, however, when the size of the
particles of interest does not extend beyond a few nanometers.
Unfortunately, the First Rule of the Game reads, more or less,
as follows:

'"What we cannot see, we cannot measure''.

Mathematical corrections for overprojection effects at least
have nevertheless been used for many years (classical, early
references are Cahn, 1959, and Cahn and Nutting, 1959; for details
and more references see for instance Weibel, 1980, Chapter 4).

The ultimate effectiveness of such corrections as 'bias removers'
rests again on the assumption of a simple and fixed particle
shape, however. This means that the correction problem is
essentially equivalent to the unfolding problem, and hence there
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does not seem to be much scope for further progress in this
direction either.

In the stereological literature, it has nearly always been
given for granted that any bias corrections for section thick-
ness effects should be corrections for overprojection. That is,
traditionally the particles have been assumed to be opaque or,
at least, 'more opaque' than the embedding medium. In particu-
lar, the correction procedures described in Weibel (1980), in
Cruz-Orive (1983) ,and in practically all the references therein,
assume overprojection.

I have tried the aforementioned procedures quite a number
of times in order to unfold diameter distributions of hepatocyte
nuclei, for instance. One of my colleagues, Dr. Otfried Miiller,
was concerned about the fact that the algorithms in Cruz-Orive
(1983) consistently yielded mean nuclear size estimates which
were "too small" in his experience. More recently, O. Miiller
and I have tried the newer counting techniques on serially cut
blocks of rat liver observed by light microscopy. While N
estimates agree rather closely among different methods, our
attempts at estimating say mean nuclear heights (using an
unbiased estimate of N_ into an overprojection formula) led
to openly contradictory results - that is, the estimated heights
were 'too short'. This applied not only to hepatocyte, but to
non-hepatocyte nuclei as well.

I experienced a similar problem with Didima de Groot (from
NL-Rijswijk) when analyzing E-PTA stained synapses of rat
hippocampus from ultrathin serial sections - (for a discussion
of the problems inherent in the process of counting and sizing
Synapses see De Groot and Bierman, 1986). 1In spite of the fact
that synaptic contacts appear as 'black' and the matrix as
'white', we have certainly begun to wonder whether being 'white'
implies being 'translucent'!

Thus, evidence is now accumulating in favour of the hypothe-
sis that, in many cases, an underprojection model should be more
adequate than an overprojection model. The distinction is
important, because a particle height estimate obtained via the
underprojection model exceeds the estimate obtained via the
overprojection model by two section thicknesses! (provided, of
course, that a same, unbiased estimate of N._ is used in both
cases - see Cruz-Orive and Hunziker, 1986, équs. (8.1a), (8.1b)).

Quite recently, Ewald R. Weibel has offered me the opportun-
ity to see some of his correspondence (as Past President of the
ISS) with Hans Elias. In a letter dated October 1, 1969, the
latter writes:

'"The Holmes effect deals with overlap of completely
opaque objects. |t does not apply to translucent things,
such as nuclei in liver cells or oblique membranes.

In liver cells, it does apply to ribosomes and to
glycogen particles."

Once again, I should have known that before!
The only treatment I know on the translucent spheres
underprojection problem which is general enough is that of
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Coleman (1983). A ready-to-use algorithm for unfolding size
distributions of translucent spheres based on Coleman's results
does not seem to have been published, however.

Although there is certainly a case for seriously considering
the underprojection effect, at least in biology, the 'truth' is,
as usual, likely to lie in the middle: we will seldom have either
pure overprojection or pure underprojection. The physical arti-
facts introduced by section thickness are probably too complex
to admit simple corrections which are useful and realistic in
every particular case.

Particle size distributions

As we have mentioned, particle number can be unbiasedly
estimated by any direct counting method. Presently - September
1986 - the list of direct unbiased probes reads: the serial
stack, the disector, the unbiased brick, the fractionator and
the selector. For details see for instance Gundersen (1986)
or Cruz-Orive (1986). As we have also seen, having N_ means
having_ordinary (i.e. number-weighted) mean particle 'sizes,

e.g. VN = VV/NV’ Sy = SV/NV and hN = NA/NV’ (albeit somewhat

biased by section thickness and truncation artifacts, as already
giscussed). Moreover, the mean particle volume-weighted volume

v is directly available on independent random sections via
point-sampled intercepts, whereby also the coefficient of varia-
tion of particle volumes, namely CVN(V) = SDN(V)/GN, is estimable

without actually knowing the particle size distribution at all.
: . : . : ; : B og= 2
This is easily achieved using the identity CVN(V)=(VV/VN— l)l/ p
(to see this, note that GV is just GE/GN and that
— T2 = 2
Var, (v) = vg (vgd = ).

The foregoing remarks mean that particle number, mean sizes
and variation in size are available without having to estimate
any particle size histograms. In order to please the more exigent
customer who also wants the actual size distribution (e.g. in
order to study nuclear ploidies), the only unbiased way we know
at present to estimate such distributions for a population of
embedded particles essentially consists of the following two

steps:

(i) sample a number of particles with identical probabilities
using disectors of technically well chosen but otherwise unknown
thickness(i.e. selectors).

(ii) For each of the particles sampled in the preceding step,
measure the required size parameters as accurately as possible -
this will normally necessitate the use of ancillary serial sect-
ions through the sampled particles.

The collection of particle sizes so obtained will estimate
the required size distribution unbiasedly without further
qualification - see for instance Gundersen (1986, section 3.3),
Braendgaard and Gundersen (1986, section 1.3) and Cruz-Orive (1986).
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The main problem encountered in the Preceding method ,however,
is how to measure a particle size parameter accurately from
serial sections of the particle. This is discussed next.

To start with, if a particle is close to a sphere or to a
circular disk in shape, then the diameter of the biggest profile
in the series of ancillary sections through the particle will
be close to the true diameter of the particle.

For an arbitrary particle sampled as indicated in step (i)
above, we shall consider only the estimation of its volume and
surface area.

In order to get rid of the bad news first, it must be said
that no reasonably accurate estimate of surface area exists
for an arbitrary particle from a set of parallel serial sections
of it (see also Gundersen, 1986, p.30). If the particle could
be handled at will, like a (cold!) potato or a clay figurine
of a Paddington bear, then the situation would be quite different
(see Baddeley et al., 1986, Fig.9), but here we are unfortuna-
tely talking about small particles embedded in situ. This leaves
us with the hope of getting the volume distribution at least...

If the distance between say the upper faces of the sections
used for analysis is not known, then we can still get an unbiased
estimator of the volume of the particle by measuring point-
sampled intercepts on these sections. The volume estimate so
obtained can yield an accurate estimate of mean particle volume
v, when combined with the analogous estimate obtained for say
another 40 or 50 different particles (sampled with identical
probabilities all of them) but, unfortunately, it is not accurate
enough to be used individually. 1In other words, a histogram
made with such volume estimates will in general be quite
different from the true volume distribution.

As a handy interlude, the positive feature of the preceding
approach is that, having access to an accurate estimate of v
(namely the mean volume of all particles) enables us to estimate
particle number indirectly via the identity NV = VV/VN. And

the remarkable fact is that section thickness is used nowhere:
this is the essence of the selector method for estimating
particle number (Cruz-Orive, 1986).

Coming back to the volume distribution problem, an unbiased
and precise estimator of the volume of each individual particle
in the sample can be obtained using Cavalieri's approach, namely
as a product of total transect area in the serial sections
through the particle times the mean distance between the upper
faces of the sections (which reduces to mean section thickness
if the sections are adjacent). For further refinements, notably
for removing some of the bias caused by either over- or under-
projection, see Gundersen (1986, equ. (4.1)).

In short, the main technical requirement for obtaining an
unbiased estimate of particle volume distribution is a reliable
assessment of section thickness.
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A final note on B. Cavalieri

There is perhaps a certain parallelism between the approach
adopted by the Italian mathematician Bonaventura Cavalieri
(1598 - 1647) in his famous "Geometria degli Indivisibili"
(Cavalieri, 1635, 1966 - see Fig. 2 below) and the current
evolution of stereology.

GEOMETRIA

INDIVISIBILIBVS
CONTINVORVM
Noua quadam ratione promota.
AVTHORE

F.BONAVENTVRA CAVALERIO MEDIOL 4N,
Ord. Iefustorum S. Huronymi, D, M. Mafearelle Pr.
AcihAlino Bonon, Gymn. Prim. Mathematicar. m Profeffor*
AD ILLVSTRISS. 8T REVERBNDISS D.

D.IOANNEM GCIAMPOLV M,

i Nel Slmlio di ﬁolognn.
il Mors 41 primo Ll\Dt'L!l"hrt 1647
| Ineta d anni 49 -

BONONIE, Typs Chemearis Fenreail. M. DC. XXXV, Sugetiorem prrm,

(a) (b)

Figure 2. (a): Buonaventura Cavalieri and (b): reproduction
of the title page of his Geometria degli Indivisibili
published in 1635.

Indeed, up to Cavalieri's time the prevailing mathematics
(and science at large, notably astronomy) were dominated by the
traditional Greek geometry, the central object of which was the
exhaustive study of the properties of regular (e.g. 'Platonic')
solids. Archimedes, for instance, excelled in the development
of beautiful geometry for such model solids, notably using his
celebrated limiting procedures in order to find the exact areas
and volumes of many such solids, (see e.g. Heath, 1960). In a
quite different fashion, however, Cavalieri simply ignores any
assumptions regarding shape, and he establishes instead a
general definition of volume for an arbitrary solid by way of
comparison of its lower-dimensional sections with those of a
reference solid of the same 'height'. He thereby implicitly
expresses a volume as a sum of section areas (up to a constant
which is of course the mean distance between the sections).
This was also the 'method of Archimedes', but the latter
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incorporates shape assumptions, however, in order to proceed
further via limiting procedures. Thus, Cavalieri sacrifices
the explicit, model-based result in favour of a more general
(in modern terms 'non-parametric') approach.

As a very minor tribute, it seems therefore fair that the
unbiased estimator of the volume of an arbitrary solid from
parallel systematic sections is named after Cavalieri, as
already suggested in Sterio (1984, p.131).

CONCLUSIONS AND COMMENTS

The recent discovery of an earlier use of the term 'Stereo-

logie' - quite different from the current one - by D.Stoyan,
again illustrates how difficult is to coin anything entirely
'new'. This particularly applies as well to the 'modern'

unbiased counting probes, some of which were anticipated by
W.R. Thompson in 1932. In turn, it is not unlikely that the
latter was simply collecting a number of ideas which were
already 'in the air' at the time.

The anecdotes about Thompson's pdper, for instance, should
constitute a warning against our discarding a paper or an idea
before adopting certain precautions - i.e. "to keep our eyes
and ears open", in H.Elias' words.

On the more technical side, an important conclusion is
that, with the advent of the direct, unbiased sampling probes,
the practical stereology of particles is likely to be deeply
affected, and the era of 'unfolding methods' might thereby be
well over.

The methods discussed in this paper pertain mainly to what
could be called 'classical stereology', namely methods for
estimating global quantities such as volume, surface area and
number of particles. The evolution here has been fast during
the last two or three years, and it clearly points toward
freedom from shape assumptions. Notable developments here are
the vertical sections design, the point-sampled intercept
methods, and the various unbiased counting procedures. The
number of theoretical and practical barriers has therefore
been significantly reduced in classical stereology and, although
there will always remain a substantial scope for theoretical
work in the classical domain, it is clear that new problems
and new questions have to be addressed from now on. These
problems concern for instance the quantitative characterization
of spatial relationships (including questions about 'pattern’,
'shape', etc.) of which very little is as yet understood.

A realistic approach to these problems transcends the use of
traditional analytical methods, however. In the statistical
analysis of spatial point processes, for instance, - classical
hypothesis testing often has to be replaced with so-called

Monte Carlo hypothesis testing, based upon data-based computer
simulations (see e.g. Diggle, 1983). More generally, the
properties of random sets, their modelling, characterization and
analysis are as yet far from well understood - only the special
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'Boolean model' based upon the Poisson point process is
relatively easy to handle, but this is unfortunately unrealistic
in most cases, however. The available literature does not cover
far beyond general formulations for the foundation of a
mathematical theory. Still more than in the case of point
processes, further progress in the modelling and concrete
analysis of realistic random sets seems hardly possible without
the intelligent use of an open, research-oriented image
analyzing device.

In short, a new brand of problems are already ‘'calling to
our door' to mark the start of a new era in stereology.
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