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ABSTRACT

A procedure for obtaining the area of irregular fracture
surfaces in terms of profile (R;) and surface (R ) roughness
parameters is presented. A parametric equatdion §or accomplish-
ing this objective is derived and compared to others purporting
to do the same. The analytical results are evaluated with all
known experimental data and good agreement is obtained with the
equation

Rg = (4/1r)(RL—1) + 1.
Key words: Nonplanar surfaces, parametric equations, quantita-
tive fractography, roughness parameters, vertical sections.

INTRODUCTION

In quantitative fractographic studies, we are severely
limited by the extent of angular sampling that is possible over
the fracture surface. Tilting in the SEM stage quickly pro-
duces unrecognizable topography and serious overlapping, while
stereoimaging is useful only with fairly flat facets. Sampling
by section planes through the fracture surface automatically
limits the possible angles of subsequent sections. Consequent-
ly, most sampling of fracture surfaces by sectioning is done
with "vertical" sections (perpendicular to the effective plane
through the fracture surface.)

Generally we have a partially-oriented fracture surface
rather than one with randomly-oriented surface elements.
Vertical sections then produce a fracture profile whieh is also
partially-oriented. For this reason, we would like to have a
relationship between surface roughness and profile roughness
that takes partial orientation into account. An equation that
accomplishes this objective, and overcomes some limitations of
other expressions, is discussed below.
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BACKGROUND

Early attempts to express the "roughness" of a nonplanar
fracture surface and its profiles produced several kinds of
roughness parameters (El-Soudani, 1978; Gray, et al., 1983;
Hsu, 1962; Pickens and Gurland, 1976; Shieh, 1974; see Under-
wood, 1984; Underwood and Chakrabortty, 1981; Ward, 1975;
Wright and Karlsson, 1983). Lately, the overwhelming consensus
has centered on two simple, physically meaningful roughness
parameters: Rg and R. (Coster and Chermant, 1983; Exner and
Fripan, 1985; 8nderwood, 1986b; Wright and Karlsson, 1983).

RS’ the surface roughness parameter, is defined by

— 1
Ro = S/A (1)
where S is the actual area of the fracture surface and A' is
its projected area. R;r the profile roughness parameter, is
defined by
= '
RL L/L (2)

where L is the measured line length and L' is its projected
length. Both the profile projection line and the fracture
surface projection plane are usually selected to lie parallel
to some arbitrary "effective" fracture plane. Both R. and R
are dimensionless ratios and depend only on the magnigude of
the surface area or line length, respectively. For flat planes
or straight line traces parallel to their projections, both

RS and RL equal unity.

These parameters have limits of 1 andeo. The minimum
value is represented by a completely oriented surface lying
parallel to its projection plane, while a surface with infinite-
ly large arearepresents the maximum value. Fracture surfaces
with configurations between the two extbremes are called
"partially oriented" (Saltykov, 1974; Underwood, 1970).

Neither R, nor R, depend on the angular orientation of their

elements.” Thus, a "random" configuration* is undefined by the
roughness parameters and cannot be used as a roughness "limit."
The differences hinge on the type of sampling employed - - for

the general stereological equations to apply, random angular
and locational sampling must be employed. For the roughness
parameters to be valid as defined, "directed" measurements are
necessary and must be applied consistently throughout.

The actual area of an irregular fracture surface is diffi-
cult to obtain with any degree of precision. Thus, considerable
effort has been expended lately in assessing the various ways
by which this area can be determined. When vertical sections
are cut through the fracture surface, profiles are generated
whose geometrical characteristics are related probabilistical-
ly to those of the surface. Accordingly, RS and RL are
intuitively felt to be related.

*By a "random" configuration we refer to a uniform angular
distribution of facet normals in three-dimensional sample space.
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R; is experimentally accessible and can be measured readily using
automatic image analysis equipment (Underwood and Banerji, 1987).
On the other hand, RS’ which is the quantity sought, must be cal-
culated. Several paPametric equations relating R, to R. have
been offered in the literature (Coster and Chermant, 1953;
El-Soudani, 1978; Underwood, 1986b; Wright and Karlsson, 1983).
The discrepancies are not minor, and in some cases the assump-
tions embodied in the derivations are questionable. This paper
attempts to clarify the basic differences between the various
approaches, and to compare them with experimental data.

ANALYSIS

The two roughness parameters are related to the stereologi-
cal quantities S_, the surface area per unit volume, and LA’ the
profile trace length per unit area. These two terms are
connected by the general stereological equation (Underwood, 1970)

S, = (4/m) L

A (3)
which is valid for any configuration of surface elements. If
the surface elements are not oriented randomly, Eq. (3) is still
applicable provided random sampling by section planes, test lines
and/or measurement points is accomplished. If the surface
elements are oriented randomly, then sampling can be performed

in any preferred direction and Eq. (3) is still applicable.

For oriented or partially-oriented surfaces,’ special
equations exist that provide additional information of a
directional nature (Underwood, 1970). Eq. (3) is still valid,
of course, but significant simplifications are achieved in some
cases with directed measurements. For example, a special case
of Eq. (3) applies to the completely-oriented surface, which
represents a minimum area configuration. When section planes
are cut perpendicular to the oriented surface, the traces are
straight lines and

(Sv)or = (LA)or ¢

(4)

This expression requires directed sectioning perpendicular to
the oriented (planar) surface. A similar relationship applies
to ruled surfaces (generated by the parallel translation of a

straight line). The profile can have any degree of complexity,
so the area of a ruled surface can be greater than that of the
completely-oriented surface. The equation is

(Sv)ruled = (LA)L vo)

where again the section planes must be directed perpendicular to
the ruled surface elements.

A general equation that expresses the gamut of configura-
tions between the completely-oriented and random fracture sur-
faces (Underwood and Banerji, 1983) is

SV=K_QLA (6)
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The two extremes are represented by Egs. (4) and (3), thus the
limits of the coefficient Kq are

1€k, € % (7)

Kq may be considered to be a function of the Degree of Orienta-
tion for lines in a plane,Sllz, which is defined by

5112 = Lor/L (8)

where L is the length of the oriented components of a profile
of tota?rlength L. Ile can vary between the limits of 0 and 1,
where 0 represents no Ofiented components (a completely random
line) and 1 means a completely oriented line. Since (L is
determined by directed measurements, (PLh. and (PL)" . %%en the
use of Kn must also be restricted to directed measurements.

In order to evaluate Kq over the range of partially
oriented lines between the two extremes set up above, we intro-
duce the parameter R+ defined by

_ L -1
Rf = I (9)
where L is the true profile length and L' is its projected
length in the selected direction. It is apparent that
_ _ Lt 1
Re =1-$-=1-¢ (10)
L
where R, is the roughness parameter defined above. The values
of R, vary between 0 (for the oriented case when L = L') and
approach 1 (for the extremely complex trace where L » L'), or

1 2R. 20 . (11)

£
We can now evaluate Ky in terms of Ry between the limits
specified in Egs. (7) and (11). Assuming linearity between the
extreme configurations, we equate two values for the slope and
obtain
Kﬂ_l

= L 4 (12)

.
Rp w

Solving for Ko and substituting for R from Eg. (10) gives

R -1
=L 4 _

This value of Kn can be substituted into Eq. (6).

However, we would rather express Eq. (6) in terms of rough-
ness parameters. This can be accomplished readily as seen in
Figure 1. The surface area per unit volume is

s, = s/vT = S/A'h = Rs/h (14)
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Yertica/ Section

Figure 1. Arbitrary Test Volume Enclosing a Fracture Surface.

and the trace length per unit area is

L,= L/A, = L/L'h = Ry /h (15)

Substituting for SV and L in Eq. (3) yields

Ry = (4/m) R (16)

and in Eq. (6) gives

Rg = Ky Rp (17)
Replacing Kg with the expression in Eq. (13) and simplifying,
results in the useful equation

4
R, == (RL -1) +1 (18)
This parametric equation relates Rg linearly to the single
parameter R. for any degree of oriéntation between a completely
oriented surface and one with a high degree of roughness. It is
applicable between R. = 1 and R. » 1, which simplify to the
completely-oriented Case at the lower limit

(Rg), = (R.) =1 (19)

and to Eg. (16) at the upper limit in RL'
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A two-parameter roughness equation has also been proposed (Under-

wood, 1986a). It involves both RL and_ﬂ.12 explicitly and has the
form
|4 _ (4 _
R, -[" (" 1)Q12]RL (20)
and is also based on directed measurements. For () = 1 (com-

pletely-oriented profile), Eq. (19) is obtained, a%g for1112—+ 0
(limiting case for an extremely complex configuration), we
obtain Eq. (16).

Another parametric equation that has appeared from other
sources (Coster and Chermant, 1983; Wright and Karlsson, 1983)
is

R, = (=2
s T- 2
This relationship is based on limits of 1<¢R_<2 and 1sR_<T/2.
The upper limits derive from the general stereological equations

(Underwood, 1970, Underwood, 1972) for mean projected area B'
and mean projected length T', vigz.

)(RL - 1) +1 (21)

S =2A"' (22)
and

L

(m/2)L! (23)

for a surface of area S and a line in a plane of length L,
respectively. Under these conditions we see that R = 2 and
R, = ™/2. However, there is an important differencé here for
Egs. (1) and (2). The latter definitions do not involve mean
projected quantities, as do Eqs. (22) and (23). The results
from Eqs. (22) and (23) are valid for all fracture surface
configurations, if randomly sampled, and do not discriminate
between completely-oriented, partially-oriented, or random
surfaces. Moreover, finite values for the upper limits
(RS = 2 and R, = T/2) are meaningless when applied to the
roughness parameters as defined by Egs. (1) and (2). There,
the values of both R_ and R. must approach infinity as the

S L .
fracture surface becomes more and more complex. Thus, there is
no physical justification for the cut-off at R = 2 R. = n/2.
These comments will be examined in the next se&tion wkere the
various parametric equations and actual experimental points are
shown together on a plot of RS vs RL.

EXPERIMENTAL

The validity of parametric equations that relate R, and R
can be assessed with experimental data or with data obtained
from a computer simulated fracture surface (CSFS) of known
characteristics (Underwood and Underwood, 1982; Underwood and
Banerji, 1983). R, is measured directly from vertical sections
through the fracture surface. However, R_ for real fracture
surfaces must be calculated and can be degermined in several
ways: (1) by a modified form (Underwood and Banerji, 1987) of
the Scriven and Williams' (Seriven and Williams, 1965) analysis
based on the angular distribution of linear elements along the

L
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profile; (2) by parametric equations such as Eq. (18); and

(3) by a triangulation method (Exner and Fripan, 1985;

Wright and Karlsson, 1983) based on stereophotogrammetry of
the fracture surface. Also, both R, and R can be calculated
readily for any degree of distortion of th& CSFS. Methods (1)
and (3) embody the assumption of flat, finite-sized facets, so
the results appear to better advantage with heavily faceted
fracture surfaces. Method (2) is independent of any shape
assumptions, so is more general.

All known pairs of R_ and R. values are plotted in Figure 2
with respect to four superimposeg curves. The median curve is
Eq. (18) and is shown as a heavy solid line. The two limit
curves appear as dashed lines and are defined by Eq. (16) for
the upper limit and by Eq. (5) for the lower limit. Eq. (21) is
also included as the dotted curve, but is shown primarily for
comparison purposes.

The experimental points in Figure 2 include roughness data
for 4340 steels (Banerji, 1986; Underwood, 1986b), Af-4% Cu
alloys in four heat treat conditions (Banerji and Underwood,
1985; Banerji, 1986), Ti-alloys with 24 and 28 %V (Underwood and
Chakrabortty, 1981; Underwood, 1986b), and an A220 plus 3%
glass ceramic material (Exner and Fripan, 1985). %he horizontal
bars through the triangles represent the 95 percent confidence
limits of R -values from six serial sections for each of the
AL-4% Cu al%oys.

In general, the points fall satisfactorily close to the
median curve. Some points (+,x,A) tend to lie more toward the
upper limit curve, and these originate from fracture surfaces
that are heavily faceted. It would appear that the faceted
configurations conform closer to the assumptions of the analyti-
cal methods than the complex, partially-oriented 4340 fracture
surfaces (0,0). Of course, all points would fall on the upper
limit curve if the surfaces were (or could be) sampled randomly.

The location of all points in Figure 2 are dependent on the
accuracy with which R. has been determined, which in turn depends
on the accuracy with which L, the true profile length, is
determined. We know there is a fractal variation in the apparent
length of an irregular curve depending on the size of the
measuring unit, 4, used to estimate the profile length (Paum-
gartner, et al., 1981). We have proposed a procedure that
eliminates the fractal variation in apparent profile length as a
function of n (Underwood and Banerji, 1986). Extrapolated
values of R, for N — 0 represent the "true" values of R and are
designated gy (R.) . The corresponding values for "trus"
fracture surface 'area are denoted by (R_) . The six filled
circles in Figure 2 show the locations of "these asymptotic
values of (R )o and (R )o- They all fall closely around the
heavy median~1line, which greatly enhances the credibility of
Eq. (18).
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Surface Roughness Parameter, Rg
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| Parametric Relationships

_____ Rg = (4/m) Ry

Rg = (4/m) (Ry-1) + 1
"
————— (Rg) rulea = (Ry) | o
4
......... Rg = [2/(T-2)] (Rp-1) + 1 -~

Experimental Data

4340 (isochronous)
4340 (isothermal)
4340 (RL)O,(RS)O
Al-4% Cu (95% C.L.)
Ti-28% V
Alp03-glass (R.T.)
Aly03-glass (1100°C)
Prototype facet

eX+rmDO@OO

— ——— , :
1.0 L5 2.0 2.5
Profile Roughness Parameter, R}

gure 2. Plot of All Known Experimental Pairs of Ry, Rg.
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CONCLUSIONS

Of the several parametric roughness equations available for

calculating RS from RL’ the most useful appears to be Eq. (18),
- 4 -
R, = v (RL 1) + 1.

This relationship is based on directed, rather than random
measurements. The important point emphasized here is that
relationships based on general stereological equations are
valid for any type of surface configuration, provided sampling
is performed randomly. However, they give no information about
the type of surface being investigated.
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