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ABSTRACT

Microstructure is often described quantitatively in two dimensional
space from measurements on sections. But the morphology of materials must
be defined in three dimensional space. In this paper we present the diffe-
rent parameters allowing to describe quantitatively a structure in three
dimensional space without any hypothesis.
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INTRODUCTION

The properties of a material depend mainly on its texture, i.e. 1its
macrostructure or its microstructure according to the scale at which the
constitutive elements are observed. Moreover the physical properties of a
material concern the whole volume and thus they depend on the tridimensio-
nal characteristics of its texture.

To analyze the morphology of a material, it is necessary to know "a
priori"
- the number of present phases,
- the interfaces between the phases.

A texture can be intuitively described by parameters such as :
- quantity,
- size,
- number,
- shape.

Otherwise the spatial distribution of the elements of the structure is
also accessible by describing
- the geographical dispersion,
- the dispersion of orientation (anisotropy),
- the dispersion of size (size distribution measurements).
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An  intersection of the microstructure by a random plane allows to
determine some of these characteristics. Some tridimensional parameters are
accessible by an analysis in two dimensional gpace or in spaces of a lower
dimension. But these parameters describe only the quantity and the size. To
obtain a complete description of a microstructure, i.e. to accede also to
the number and to the shape without restrictive hypothesis, it is necessary
to realize an analysis of the microstructure in the three dimensional
space.

The aim of this paper is to present the parameters allowing to descri-
be quantitatively, without any hypothesis, a three dimensional structure.
We shall begin by presenting the restraints on the analysis itself,

RESTRICTIVE CONDITIONS OF ANALYSIS

A structure cannot be described using any parameter in any conditions.

First, the 1local continuity of the structure is essential to insure
the meaning of the measure. That is to say that the parameters must be
independent of the scale of measurements or that the fineness of the analy-
sis must be sufficient to have a large structure regarding the scale of
analysis. In other words, the structure must not present a fractal aspect.

Secondly the whole frame of analysis (eventually subdivided in several
frames) must be large regarding the scale of the structure. This means that
the sampling must be sufficiently important to obtain a measure tending to
a limit when the number of fields of analysis increase (ergodicity). This
second condition is essential only for the local analysis of a microstruc-
ture, i.e.when this one is observed locally through a frame of measurements
and not globally in all its entireness. This is practically always the case
in materials science, in geology and in biology for example.

At last one can imagine a great number of parameters to describe a
structure but they must possess a correct physical and mathematical mea-
ning. For the stereological context, H. Hadwiger (1957) has proposed the
conditions allowing to select these parameters. They are

- Invariance by translation or rotation
The morphological information obtained on a structure must be indepen-
dent of the position of the frame of measurements. It is to be noted
that the anisotropy can be characterized by parameters which, precise-
ly, do not follow this condition of invariance by rotation,

- Homogeneity
If the measurement is done at several magnifications on the same set,
the results must be the same. :

- Continuity
A small deformation of the structure must not lead to large changes in
the parameter measured.

- Additivity .
The condition of additivity is essential to calculate the means.
By using set relationship we have
W(X) + W(Y) = WXUY) + w(xNy)
where W(X) is the measure of the parameter W on the set X.

H. Hadwiger has shown that there exist four parameters corresponding
to the previous criteria when the structure is defined in the three dimen-
sional space. They are
- the volume,

- the surface,
- the integral of mean curvature,
- the integral of total curvature.
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The three first parameters are related to the quantity and to the
size: these are metric properties. The last one depends on the number and
on the shape of the surfaces : this is a topological property of the three
dimensional space.

We shall present now the parameters which can be measured 1in this
regtrictive case and which allow a global description of microstructures.

METRIC PROPERTIES

If the hypothesis of stationarity is made when a structure is analyzed
in local conditions, this allows to replace the measurements of a parameter
by its probability. The probabilistic relationships of the stereology allow
then to estimate
- the volumic fraction, V_,

- the specific surface area per unit volume, SV’
- the integral of mean curvature, MV.

As the material is not known in its integrality, it is sampled and the

properties are brought back per unit volume in order to normalize them.

The use of these parameters is very important in materials science and
in geology. For example one can cite the linear evolution of two physical
properties : hardness and coercitive field, as a function of microstructu-
ral parameters specific surface area and mean free path (Rhines, 1985 ;
Exner & Fischmeister, 1966).

TOPOLOGICAL PROPERTIES

The topological properties of objects are related to their boundaries.
In R space these boundaries are surfaces which can be characterized by
their
- number,
- orientation,
- edge,
- genus,

The surfaces present in a material are orientable and without edge. On
the other hand their number and their genus can vary to the infinity.

The genus of a surface is the maximum number of closed curves that can
be drawn on this surface maintaining its connexity (one says that a set is
connex if, for all pair of points belonging to this set, one can draw at
least one path totally included in the set). In other words, 1in R~ space
the genus of a gurface corresponds to the number of sections that can be
made through the set defined by this surface without cutting it in several
parts (Fig., 1).

Among the topological parameters only the number of connectivity 1in
the different spaces fulfills the Hadwiger conditions. The number of con-
nectivity in the R™ space, N,, is a combination of the genus, g, and of the
number, s, of the distinct surfaces present in the structure., One have

N3=E-Zg
8

We have, there, three topological parameters linked together
- the connectivity number, N,,
- the number of distinct surfaces, s,
- the genus of each surface, g.
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Fig. 1 : Genus of two surfaces : sphere and torus.

he connectivity numbers can be defined in the four spaces, RO, Rl, R2
and R” with a geometrical construction due to H. Poincaré (1912). Without
entering in the details of this construction (Coster & Chermant, 1985), we
shall give some brief indications on the way how to obtain the different
connectivity numbers., In all cases the connectivity number of the set X in
the space R" is related by recurrence to the connectivity number of the
sub-gets of X in the space R"" .

- The connectivity number, N , 1in the space RO, of a set X is defined as
the number of points of X belonging to the intersection of X by a grid of
points, 1

- The connectivity number, N,, in the space R, corresponds to the number
of segments cut in X by its intersection with a straight line.

- The connectivity number, N,, 1in the space R, is obtained by the succes-
sive intersections of X w%th a straight line scanning all the plane. It
corresponds to the number of connex particles of X less the number of
enclaves contained in it (Serra, 1982),

- The connectivity number, N , in the space R, is defined by the successi-
ve intersections of X by a~ plane scanning all the space. This last con-
nectivity number can be only calculated in undertaking a three dimensio-
nal analysis of the microstructure.

One can note that, for bounded sets, there exists a simple relation-
ship between the connectivity number, N, of a set and the connectivity
number, N7, of the complementary set :

[N+ (-1 N =1

with j the dimension of the space where the set X and the complementary set
X¢ are defined.

Figure 2 presents three examples of objects in the space R3 with their
number of surfaces, their connectivity numbers and their genus. It can be
seen on this figure that the physical number of objects is different from
the number of surfaces, from the genus and from the number of connectivity.

Moreover the genus does not appear in the microstructural parameters
defined with the Hadwiger criteria. The genus (as the number of objects or
the number of surfaces) does not follow the condition of additivity. Then,
the genus and the number of objects cannot be exactly obtained locally.
This 1is shown on figure 3 where the relationship of additivity has been
tested for two kinds of sets homeomorphic to the sphere. It can be seen
that the only topological parameter which verifies this relationship with-
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g-o g=0 g-1
N,- 2 N,=1 N,-=0

Fig. 2 : Number of surfaces, s, genus, g, and connectivity number, N3, of a
hollow sphere, a sphere and a torus.

WIX)+WIY) =-WIXUY) +wixny)
[ I I | N,
P44 = § # 7 5
0+0 = 0 + 0 g
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1+ 1 1 + 2 p
0+ 0 T+ 0 g
Fig. 3 : Testing of the relation of additivity for three parameters : the

connectivity number, N3, the physical number of particles, Ns’ and
the genus, g.

out any hypothesis is the connectivity number. It verifies also the rela-
tionships of additivity for the sets homeomorphic to the torus or to a
hollow sphere or for any arrangement of these ones.

The connectivity number in the R3 space is related to the integral of
total curvature of the structure (or Gaussian curvature) by the relation-

ship (Serra, 1982) : 1
G=/]RRdS=QlN
sl 2
R1 and R2 being the main curvature radii in each point of the surface S.

3

ACQUISITION OF THE MICROSTRUCTURAL PARAMETERS

The automatic analysis carried out in sampling the structure to be
analyzed by a set of points is particularly interesting. First the analysis
fs rapid and automatic ! Then the Euclidean space, which is very rich, is
replaced by a space poorer but much more easy to manipulate : the number of
neighbours of a point is finite, which is not the case for the Euclidean
space. We have seen that all the microstructural parameters - V., S, M,
Nv - can be obtained by counting : then we have only to investigate neigh-
bourhoods (except for NO).
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The analysis of a digitalized structure can be made in using two me-
thods
- adaptation of the Euler-Poincaré method to a discretized space,
- use of the Euler relation.

In order to simplify we will present there only the Euler method.
Information on the Euler-Poincaré method can be obtained in Coster & Cher-
mant (1985) and in Serra (1982). Firstly established to describe the surfa-
ces of polyedrons, the Euler relation is generalizable to a discretized
space in which configurations are tested. The connectivity number of a set
defined in a space j is given by

3
N,a L (1)t

i i=0
with ni the number of elements of dimension 1i.

i

For example in the space R3 we have

N3 = no - n1 + n2 - n3

with ng ¢ number of vertices,
ny o number of edges,
n, : number of faces,
ny number of elementary volumes.

The shape of the elements depends obviously of the type of grid of
analysis. For clarity's sake we shall use for the examples a square (or
cubic) grid, considering that each point possesses &4 neighbours in R” space
(the diagonal points being excluded) and 6 neighbours in R space. The
Euler relation js illustrated in a digitalized space of analysis on figures
4 and 5. For R space, the three examples correspond to objects homeomor -
phic to the sphere, to the torus and to a hollow sphere. A combination of
these three objects allows to construct any tridimensional structure. The
connectivity numbers obtained in the different spaces of analysis are then
directly related by simple relationships (J. Serra, 1982) to the four
quantitative parameters in local analysis

- volumic fraction, V, eeN
: \% 0
- specific surface area, SV*» Nl
- integral of mean curvature, MV*—'N2
- integral of total curvature, Gv** N3

—000—00- N, -n()-n()
—-eo0e0——o N,-13-5

R? N, =n()-n(1) +n(}})
N,= 13-13+1

0 1
Fig. 4 : I%lustration of the extension of the Euler relation in R , R and
R
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Fig. 5 : TIllustration of the extension of the Euler relation in R3.

MODELIZATION OF THE STRUCTURE

These four parameters are the only ones which allow to describe exac-
tly a structure without any hypothesis or without any previous information
on the structure. On the other hand if we possess information on the
structure before the quantitative analysis, the qualitative observations
that we have allow a modelization. Then an interaction can arise between
the observation of the structure and its analysis. This interaction gives
quantitative morphological information unaccessible by another way.

For example, let us take a material with two phases in which the
imbricated degree of the phases can present two limit cases and an infinity

of intermediate configurations.

Totally dispersed structures

For a granular structure (Fig. 6) the simplest model 1is based on
particles homeomorphic to the sphere. In this case, for the surfaces. of
separation with the complementary set, the value of the genus is zero. To
each particle corresponds one surface and, in this case, the connectivity
number is nothing else that the physical number of particles, NP

Then the number of connectivity allows to accede to the physical

Fig. 6 : Totally dispersed structure.
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number of particles without any other hypothesis than the homeomorphism to
the sphere (the convexity of the particles being not necessary). We have to
note that the 'clasgical" stereological methods used to determine the
number of particles per unit volume (even those which use serial section-
ning) are all based on the hypothesis that the structure is composed of
convex disconnected sets. The number of objects is only locally accessible
in this case, as it is the only one where the condition of additivity is
verified. This is also true in the limit case where the volume fraction of
one of the two phases is zero (polycrystalline material).

Totally interconnected structures

In the case of a totally interconnected structure (Fig. 7), there
exists only one surface of separation between the two phases. The number of
connectivity is then related only to the genus of this surface

N3 = l-g
One notes that, for this case, the size in the R3 space, is not acces-
sible from the connectivity number unljke the previous case (Vv = V. /N ).

Anyway, the notion of size defined in R™ (mean free path) keeps always Yts
meaning.

Fig. 7 : Totally interconnected structure.

Intermediate structures

A granular structure during sintering is a good example for interme-
diate structures. The porous space, initially interconnected (Fig. 7),
disappears progressively by dispersion (Fig. 6). To understand the change
in the morphology of such a material, it is necessary to follow the solid/
pore interface.

The connectivity number is related to the integral of total curvature:
it allows then to appreciate the relative ratio of the saddle surfaces with
respect to the concave or convex surfaces when branching of the interfaces
arises by a complex way.

CONCLUSION

To analyze a three dimensional structure without any previous hypothe-
sbs onlits Ehape, tBe connectivity number measured in the different spaces
R, R7, R and R is the only parameter which takes into account the
characteristics of this structure by a mathematically exact way. One can
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say that:
- Ny (or VV) informs on the quantity,
- Ny (or SV) defines a kind of size,
- N2 (or MV) is linked to the irregularity of the structure and to its
number of concave surfaces,
- N3 (or Gv) is linked to the number of branchings of the structure.
To complete these informations, an interaction between the analysis
and the observation of the structure can allow to modelize the structure
unambiguously.
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