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ABSTRACT

No other stereological problem but that of estimating the
sphere size distribution from the profile distribution observed
in a single section has been shown on so many occasions to be
statistically ill-posed. In this paper, we reconsider the cor-
puscle problem and suggest a direct solution based on local
spatial information. The key tool is the disector which uses

information from two parallel sections simultaneously.
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1. INTRODUCTION

Wicksell's classical corpuscle problem (1925) concerns
the estimation of sphere diameter distribution from measure-
ments of diameters of circular profiles on a plane section
through the aggregate of spherical particles. The relation
between the observed distribution of profile diameters and
the sphere diameter distribution is a well-known integral equa-
tion of Abel type (if section thickness is zero). Let F Dbe
the distribution function of sphere diameters and G the dis-
tribution function of diameters of circular profiles. Then
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where p is the first moment of F. A whole range of methods
have been suggested for estimating F from G, including fi-
nite difference algorithms, product integration methods and
parametric methods. For a critical review, see Cruz-Orive (1983).
Most of these methods have been extensively criticized on sta-
tistical and numerical grounds, cf. e.g. Watson (1971) and An-
derssen and Jakeman (1975). A main reason for these short-comings
is that the integral equation constituting the analytical so-
lution of the problem contains a singularity in the integrand.

Instead of adding yet another partial solution to an ap-
parently ill-posed problem, we suggest that one should take the
consequence of recent developments in stereological particle
analysis and solve the corpuscle problem by entering the third
dimension locally, cf. Sterio (1984) , Cruz-Orive (1986), Gunder-
sen (1986). The suggestion involves a change in the geometric
sampling of particles and more measurements than just a single
diameter in one plane section through each sampled particle.

The sampling is based on information from two parallel sec-
tions simultaneously. The idea is to sample all particles hitting
one of the planes. (the reference plane), but not the other plane
(look-up plane). Such a pair of parallel planes is called a
disector. Using this type of sampling, each particle has, in

contrast to usual plane sampling, a constant chance (not depend-

ent on size) of being sampled. Until now, the power of this idea
has been demonstrated by the development of number and mean size
estimators based on disector sampling, which are applicable to
arbitrarily shaped particles. In a further development of the
disector - dubbed 'the fractionator' (Gundersen, 1986) - it

is not even necessary to know the distance between section planes,
the reference volume or assume anything about shrinkage/swelling.
Also on a single section, one may obtain an unbiased estimate

of a mean size valid for arbitrarily shaped particles (Jensen

and Gundersen, 1985).

Depending on how close the particles are to spherical shape,
different procedures with varying degrees of robustness against
departures from the shape assumption can be used for determining
the size of each sampled particle. All the described procedures
are based on measurements from two or more parallel sections

through a sampled particle.
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2. DISECTOR SAMPLING

The disector is a geometric sampling device by means of
which it is possible to obtain a uniform random sample of par-
ticles from a spatial aggregate of particles. The disector can
be applied to arbitrarily shaped particles.

A disector consists of two parallel sections of thickness
t > 0 and with mutual distance h > t. Typically, h will
be a multiple k of ¢t (k > 1); for instance, when a spatial
block containing particles is serially sectioned and every k'th
section is analysed. A particle is sampled if some part of it
is contained in one of the sections (reference section) but not
in the other section (look-up section), cf. Fig. 1. If the par-
ticles are actually spherical, it will be particularly easy to
identify particles present in both sections since the positions
of the centers of the circular profiles are identical on the

two sections.

== —
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—t— T section
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E

Fig. 1. A disector consisting of two parallel sections. Particles
hitting the reference section but not the look-up sec-
tion are sampled (hatched particles).
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It is assumed that the height of any particle is larger than
h-t, such that any particle can hit both sections simultaneously.
In a large number of practical situations, two consecutive sec-
tions ‘'of thickness t are used, wherefore h = t. This proce-
dure has the advantage that no assumptions are necessary regard-
ing the minimal particle height.
With uniform random position (but arbitrary orientation)
of the disector, it is easy to show that each particle is sampled
with a constant probability, cf. Sterio (1984). This is also
true, if sphere caps with a height below a given limit h{(cap),
say, cannot be observed.

An alternative sampling procedure would be to sample all

particles hit by both sections. This would result in a sample
of particles from a weighted version of the diameter distribu-
tion

x—h+t-2h (cap)

p-h+t-2h (cap) aF (x) (2)

where p is the mean diameter calculated in the distribution
F. Apart from the basic fact that the sampling is no longer
from F directly, this procedure would require knowledge of

h(cap) .
3. MEASUREMENTS FROM TWO PARALLEL SECTIONS

The size of a perfect sphere is uniquely determined by
the information provided by two parallel sections through the
sphere. Thus, as shown below, the diameter x of each sampled
sphere is a simple function of the diameters ¥q and Yy ob-
served on two parallel sections with known distance h. The
distance between the two sections may depend on the size of the
sampled sphere and does not need to be equal to the distance
between the look-up and reference sections in the disector.
One of the sections used in the diameter determination will
typically be the reference section of the disector.

If t =0, the two diameters Y1 and y, can be expressed

as
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L
[x2- (22tn) 2],

where z > 0 1is the distance from the sphere center to the
'mid-plane', that is the parallel plane having equal distance
to the two planes. From (2), it easily follows that the diameter

of the sphere can be calculated as

x = (h2 + <y1;y2>2)% : (h2 + (y1;y2>2)%/h. (3)

In the general case of possibly positive section thickness,

Y1 and y, are diameters of the circular profiles obtained
after projection of the sphere fragments contained in the two
sections. The sampled sphere can be in one of three positions
with respect to the two sections, see Fig. 2: The center is
outside the two sections (a), inside one of the sections (b)

or in the space between the two sections, if such a space exists
(c).

The significant difference between these three cases is
the distance h' between the two planes of zero thickness from
which the two observed, projected diameters ¥q and y, ac-
tually come. As shown in the Appendix, it is possible to develop
an algorithm for deciding between the three cases, based on
knowledge of ¥4 and Y,r together with the constants h and
t. The algorithm is also presented in Fig. 2. In case a, (3)
is used unmodified, in case b x = Yqr simply, and in case
c, (3) is used after substitution of h with h-t in the for-
mula.

The results of this section are evidently not affected
by the phenomenon of lost caps.

4. MEASUREMENTS FROM A SERIES OF PARALLEL SECTIONS

The method described in the preceding section is satisfac-
tory from a mathematical viewpoint but entirely unsatisfactory
from a statistical viewpoint. The main reason for this is that
the method is heavily dependent on the sphere assumption and
therefore not robust at all against deviations from spherical

shape. Particles from "the real world" are seldom perfect spheres.
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x from Eq.3
with h'=h-t

Fig. 2. Algorithm for calculating the diameter x of a sphere
from measurements of the diameters vy and vy of the
circular profiles obtained after projection of“the sphere
fragments contained in the two sections of distance h.
To the right, the distance h' between the two section

planes of zero thickness, from which vy and vy ac-
tually come, is shown. The algorithm is derived in the
Appendix.

In this section, we discuss robust methods of determining
the size of a disector sampled spherical particle from more
complete data. The data are the projected areas aa,...aﬁ meas-

ured from m consecutive sections of thickness t. More pre-
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cisely, the particle is exhaustively sectioned by parallel sec-
tion planes with constant separation t, and ai is the area
of the projection of the sphere fragment contained in the i'th
section, i = 1,...,m. The set of section planes must be po-
sitioned uniform randomly on the particle, i.e. the first sec-
tion to hit the particle must be uniform random in an interval
of length t. The number m of sections is thereby usually

a random number.

The diameter of the largest projected area is a direct
estimator of the sphere diameter. In Gundersen (1986), it is
shown for a particle of general shape that t times the
sum of the remaining areas is an approximately unbiased estima-
tor of the volume v of the particle. For a spherical particle,
this so-called Archimedes-Cavalieri estimator is exactly un-

biased, since

~ m ) n
v = t( L a! - max(a')\ =t I a,, (4)
i i / L i
i=1 i=1
where aqre..,a, are the n = m-1 areas originating from the

n section planes of zero thickness, cf. Fig. 3.

aq

x

Fig. 3. A sphere sectioned by n = 4 section planes. The pro-
jected areas are, after removal of the maximal one,
in one-to-one correspondence with the areas a1, ay,
s, a, observed in the section planes.
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The extraordinary precision of this type of estimator based
on systematic geometric sampling has recently been studied by
Gundersen and Jensen (1986), Serra (1986) and L.M. Cruz-Orive,
this issue. The variance of ; is an oscillating function of
the average number n of section planes hitting the particle.
Following the rather deep analytical methods described in Mathe-
ron (1965, 1971), an approximation to the variance can be deriv-
ed using the covariogram of the section area as a function of
the position of the section plane. For a sphere, the approxima-

tion is
n . (5)

Coefficient of error of volume
010 estimator, CE (v)

0.05

2 3 4 5 6 1 8
Average number of section planes, n

Fig. 4. The coefficjient of error of the Archimedes-Cavalieri
estimator v, determined by simulation, is shown for
a sphere, as a function of the average number of sec-
tion planes (fulldrawn). The dotted curve is the approxi-
mation. With n > 3, CE(v) < 0.05, as illustrated by
the horizontal stippled line.
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The exact CE2(;) obtained by simulation (Gundersen and Jensen
(1986, Section 7)) is shown in Fig. 4 together with the approxi-
mation. Notice that CEZ(A) is of order 1/5 compared to order
1/n  for independent and identically distributed observations,
reflecting the very high precision of estimators based on sys-
tematic sampling. With n = 3 or more section planes, CE(V) <
0.05, cf. Fig. 4. It is evidently important that the variation
of ; is very small compared to the variation of volume in the
sphere population, otherwise the distribution of estimated volumes
of disector sampled particles do not represent the distribution
of volume in the sphere population. A coefficient of error of
at most 0.05 will, however, in many cases be satisfactory.

If it is not convenient to measure the areas directly,
they can be estimated unbiasedly without shape assumptions and

with high precision using a point counting method
a, =d~-p,, (6)

where Pi _is the number of points from a square grid with point
density a4 °, hitting the circular profile from the i'th sec-
tion, i =1,...,n. It is assumed that one of the grid p01nts
is uniform random in a d x 4 'square. The variance of ai is
an oscillating function of the average number of points hitting
the particle section with area a;r, cf. e.g. Matérn (1985).
Following Matheron, an approximation to the variance can be

derived. For the resulting estimator
N n
v=t I a, (7)

the result is, cf. Gundersen and Jensen (1986, formula (nd2)),

2 3 A
2(v) ~ Q;QEE%TEQ_E + CEZ(V) (8)
v

where s is the surface area of the spherical particle. Using
the approximation (5) of CE(v) and recalling that n = x/t
for a sphere of diameter X, we find

2 42 3 4, -4/3

CE”(v) =~ (0.2750 td~ + 0.0422 t")v (9)_
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The total number of points counted for a sphere of volume vV

is on the average
P = . (10)

Parametric approaches are dependent on the spherical shape
assumption, but provide more information about the particles
than just size. For an ideal sphere of diameter x, we have

up to measurement error

aiwﬂ[(%)z-<§-( +-ne) )], | (1)

i=1,...,n, where y is the distance from the lower extreme
point of the sphere to the first section plane. Regarding x
and y as unknown parameters the relation (11) can be used to
determine estimates of these parameters by some (weighted) non-
linear regression method. The number n of section planes should
be so high that the variance of the estimate of x (and vy)
is very small compared to the variation in the sphere size dis-
tribution. Note that y 1is the extra information needed for
determining the center of the sphere.

The actual number of section planes n times the section

thickness t is an extra, unbiased estimator of x.
5. VERY SMALL SPHERES

There are a number of cases where the sphere diameters
are smaller than the thickness of even the thinnest section
which can be cut. Taking three consecutive sections, using the
middle one as the reference section and the other two as look-
up sections, diameters of all spheres having their largest (or
only) diameters in the reference section constitute a uniform
random sample of sphere diameters, cf. Fig. 5. Equivalently,
spheres are sampled, if their centers are in the reference sec-
tion of known thickness t and the sample thereby also provides
a direct estimate of particle number. Note that the validity

of this sampling procedure is not affected by lost caps.
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Fig. 5. Sampling of spheres using three sections. All spheres
having their largest (or only) diameters in the middle
section are sampled.

There will most likely be an observational problem in know-
ing precisely whether the diameter of a sphere in the reference
section is actually larger than that in a neighbouring section,
see Fig. 5. The problem is very easily solved by sampling only
such spheres where the ambiguity is present between the reference
section and the upper look-up section. Spheres which have their
seemingly equally large diameters in the reference section and

the lower look-up section are ignored.
6. EXAMPLE

In order to illustrate how the discussed techniques may

look like in a real case, a series of micrographs of 2 pum thick
methylmetacrylate sections of liver tissue from an adult Wistar
rat have been analysed, cf. Fig. 6. The problem was to estimate
the size of hepatocyte nuclei which are very close to spherical
shape. The disector used in the sampling consisted of two conse-
cutive sections. The circular profiles of a sampled nucleus in
the reference section and all following sections were identified.
The diameter of each profile was determined directly using class-
intervals of length A = 0.59 um and the area was estimated by
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point ‘counting. The distance between vertical or horizontal
neighbouring grid points was chosen to be d = 2.35 uym. The
expected standard deviation of the volume estimate 3 um3 is
thereby, cf. (9),

SD(G) ~ 2.80 pmz ° v1/3 um.
The estimate of the sphere diameter x = (6 G/ﬂ)1/3 has then

an approximate standard deviation of

SD(X) ~ 1.44 ym? « x| um_1

For spherical particles of diameter x = 6 uym and 10 um, say,
the expected standard deviation is 0.24 uym and 0.14 ymn, respec-
tively. The diameter estimates obtaiﬁed by this point counting
design are, as we shall see, just as precise as those obtained
by directly classifying the maximal diameters in intervals of
length A = 0.59 um which yields an SD of 0.17 um for all dia-
meters.

If each observed circular profile is the projection of the
total sphere fragment contained in the section (overprojection,
as discussed in the previous sections), then both the maximal
diameter X ax observed in the total series of m sections
and (m-1)+t are unbiased estimates of the sphere diameter
X. For the liver data, (m=1) et was systematically smaller
than Xnax! SO overprojection is not a satisfactory description
of these data. An alternative is that each observed circular
profile is the projection of the part of the sphere which is

Fig. 6. Part of the series of micrographs of 2 um thick sections.
The micrographs were analysed at magnification 850 which
is identical to the one shown here. The first and second
sections are the look-up and reference sections of the
disector, respectively. Within the unbiased sampling frame
used in the reference section (Gundersen, 1977), a total
of 5 hepatocyte nuclei, a-e, was sampled and identified
in the following sections as indicated. The nuclei a, b,
c, d, e can be found in Table 1 as Nos. 13, 3, 5, 6, 4,
respectively. At the magnification shown, the distance
between vertical or horizontal grid points used in the
point counting was 2 mm.
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present in the whole section (underprojection, the spheres are
'cheese holes'). Then, (m+1)*t is an unbiased estimate of the
diameter x, but this estimate turned out to overestimate the
diameter. An intermediate description, where the observed cir-
cular profile originates from the mid-plane of the section, was
satisfactory. Curiously enough, this corresponds to observing
from m sections of zero thickness.

The results are shown in Table 1 for the 18 sampled nuclei.
For each nEcleus, X ax is shoyn together with the diameter
estimate x, calculated from v = t& aj cf. (4). The point
counting was performed twice, resulting in two realizations of
§, which are also shown in Table 1. The number of points count-
ed was approximately 25 and 50 for small and large spheres,
respectively. The diameter was also estimated using (3) and the
two diameters Y1 and Yy measured in the reference sectioﬁ
and in the section with distance h = 4 ym from the reference
section. Apart from a few exceptions the different procedures
give very similar results, as expected for spherical particles.

7. DISCUSSION

The method of estimating sphere sizes from data in two
sections given in Section 3 is heavily dependent on the sphere
shape assumption. A more robust alternative would be to use the
fact that an arbitrary ellipsoid (sphere, oblate, prolate or
triaxial) is uniquely determined by the ellipses seen in three
parallel section planes of known separation, cf. Mgller (1986).
The parametric method in Section 4 is also dependent on roughly
spherical particles. This method provides, however, in addition
estimates of the positions of the sphere centers whereby it is

possible to study directly the point process of sphere centers

in 3-dimensional space. This is the topic of a forthcoming report.

In addition to these shape specific procedures, stereologi-
cal methods of estimating particle number, mean sizes and size
distributions are now available (Cruz-Orive, 1980; Sterio, 1984;

Gundersen, 1986) without shape assumptions. Apart from estimates
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Nucleus - — X X x (Eq.3)
1 9.4 9.8 9.5 10.0 10.0
2 7.6 Tl 8.0 7.9 7.9
3 10.0 10.2 10.4 10.2 10.3
4 9.7 9.6 9.9 10.0 9.5
5 10.0 10.3 10.4 10.3 10.1
6 10.3 10.0 10.0 10.0 10.2
7 7.9 7.9 8.0 7.6 8.1
8 9.4 9.8 10.0 10.3 9.5
9 10.6 10.0 10.0 10.1 10.6
10 7.9 7.9 7.9 7.6 8.1
11 9.7 10.1 10.0 10.0 9.7
12 6.5 6.6 6.5 6.3 6.8
13 10.0 10.1 10.1 10.1 10.0
14 9.7 9.9 10.0 9.9 9.7
15 10.0 10.1 10.2 10.4 9.4
16 10.0 10.3 10.5 10.1 8.8
17 8.5 7.7 7.6 7.9 7.8
18 8.2 8.5 8.5 8.5 8.2

Table 1. The diameter estimates of the 18 sampled hepatocytg
nucle}: Xma is the maximal observed diameter, x
and X are éiameter estimates calculated from the
volume estimates ¥ and 9 given in (4) and (7).,
respectively, and x(Eq.3) is the diameter estimate
obtained using (3). For more details, see the text.

of usual mean size parameters, an estimate of the volume-weighted

particle mean volume GV can be determined for arbitrarily
shaped particles from just a single random section, using point-
sampled, cubed linear intercept lengths, 18 (Gundersen and
Jensen, 1985). The particular weighting in vy is actually a
significant advantage in many biological applications (Nielsen
et al., 1986; Howard, 1986).

All the applications of the disector principle for number
estimation requires that the distance h is known. The disec-

tor is, however, also used to obtain a uniform random sample
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of particles, cf. Section 2, and for that use precise knowledge
of h 1is not necessary. Cruz-Orive (1986) has recently combined
this property of the disector with the estimator of particle
volume based on point-sampled intercepts to a so-called selector.
It is thereby possible to estimate (unweighted) particle mean
volume GN without knowing h.

If the aim of a stereological study cannot be fulfilled
by estimating particle quantities like particle number, total
volume, total surface, and mean sizes, it may be necessary to

consider the particle size distribution. The principle of esti-

mating particle volume distribution by disector sampling and
accurate determination of volume of sampled particles by the
Archimedes-Cavalieri method is valid without shape assumptions.
The number of sections through a particle needed for a precise
volume determination is however shape dependent. In Gundersen
and Jensen (1986), practical methods of determining the preci-

sion of this volume estimator are reviewed.
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APPENDIX

The quantity yf—y% depending on the two measured diameters
Y4 > Y, is in each of the three cases a, b and c¢ a simple
function of the distance =z > 0 from the center of the sphere to
the 'mid-plane' with equal distance to the two sections, cf.
Fig. 2:

y?—yg = 8h(z = %), Case a (A1)
2

= 4(2 + E%E> i Case b (A2)

= 8(h-t)z, Case c (A3)

In Case a, the distance =z is thereby

(yz—yz)
112 t h+t

—=8n t2° 7 (a4)
whereby

yf-yg > 4n2, (A5)

Furthermore, it is easy to see from (A2) and (A3) that (A5)
does not hold in Case b or c. It remains to decide between Case
b and c, if Case c is actually possible, i.e. h > t. 1In Case

c, the distance 2z is

y2-y2
1Y2  h-t
gh-t) 2 §aa)
whereby
yi-y2 < a(n-t)? (a7)

In Case b, (A7) does not hold, as easily seen from (A2).



