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ABSTRACT

A fast, reproducible, completely automatic and rather accurate way of quantitative
determination of fluorescent microbial plankton is shown. In addition to the question
about the organization of an image analyser, which should nearly work without any
human intervention, some essential effects on enumeration and sizing of fluorescent
cells are treated. Fine tuning between adjustment of the optical environment (camera
intensity, dye concentration, focus level, magnification) and image interpretation
algorithms as well as an object adapted application of image segmentation techniques
(edge detection) are necessary. The edge detector should be able to separate
adjacent objects on the basis of significant grey level distributions and changes within
local image areas. Sources of etror mainly caused by limited image resolution are
made more transparent, whereby it is easier for the user to judge results of image
analysis in epifluorescence microscopy.

KEYWORDS: bacterial biomass determination, epifluorescence microscopy, image
filtering, image segmentation, SIT-video camera.

MOTIVATION AND SYSTEM ORGANIZATION

" Seasonal variation in bacterial biomass plays an important part in the food web of the
ecosystem "water". With the intention of monitoring growth and distribution of microbi-
al plankton as continuous as possible, fast, accurate and reproducible evaluation
methods are of interest. On the part of sample preparation staining bacterioplankton
with fluorescent dye (DAPI or acridine orange) for counting and sizing cells with
epifluorescence microscopy has become a favourite technique. But human direct
counting does not sufficiently provide detailed quantitative and qualitative informations
about a sample. Errors caused by fading and intuitive human sizing can be avoided
by the application of computer supported image analysis systems. Video techniques
advancing an increased automatic approach of image analysis has been developed
during the last years (Fry, 1988, Sieracki et al., 1989, David and Paul, 1989, Kram-
beck et al., 1990, Schréder et al. 1990).

With the intention to speed up the daily routine of bacterial biomass determination the
processes "microscoping” and "analysis" of sample pictures are separately executed.
During microscoping the user randomly selects different sample fields (three to five
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pictures with about 100 to 200 cells), focus level is adjusted, the picture is converted
to a digital image with 512 x 640 square and grey-scaled (0O=black..255=white) pixels
in real-time. The images are stored on hard disks or optical disks within a sample
description file structure. The later analysis of all stored images by a batch program
do not require the user’s presence.

Figure 1. Digitized fluorescent bacterioplankton stained by three different DAPI
concentrations (from left to rigth: 1.3 pg/l, 5.1 pg/l, 10.2 pg/).

PRECONDITIONS

Optimal sample preparation is the basic precondition for correct cell detection and
sizing. It is important to adapt staining intensity to the light sensitivity of the image
recording system. We use a silicon-intensified target (SIT)-video camera, which is
necessary for the detection of small bacteria near the resolution limit of epifluorescen-
ce microscopy (<0.3 pm). Even this extremely light sensitive SIT-camera is not able
to make small bacteria visible, if the concentration of dye is too low (1.3 pg DAPI/)
(Figure 1, left). Amplification of the video signal induces distinct background noise.
Otherwise, if too much dye is used (10.2 pg DAPI) (Figure 1, right) fluorescent cells
overshine, the background becomes discoloured and superfluous cloudy detritus is
created. Stable results with respect to number and biovolume of natural bacterioplank-
ton, which was stained by different dye concentrations(arranged in equidistant gra-
des), were achieved in a range round 5.1 ug DAPI/mI (Figure 1, middle). Staining
intensity depends on camera sensitivity and microscope objective characteristics.
Magpnification is the most crucial limitation factor in epifluorescence microscopy. On
the one hand a magnification factor of more than 2000 does not make sense - it
would only be an empty magnification -, but on the other hand accuracy in sizing
small cells requires as many pixel as possible. The length of a single pixel corre-
sponds to 0.089 pm at a 2000fold magnification, and the length of many aquatic
bacteria amounts 0.4 um to 0.8 um. Thus it can not be dispensed with a pixel.
Adjustment of the correct focus level is the third and last precondition for successful
cell detection and sizing. Effects of variation in focus level will be considered later.

OBJECT ADAPTED IMAGE SEGMENTATION
Before a digital image can be binary segmented into disjunct sets of background resp.

object pixels, answers to following questions should be found: which image regions do
form objects? Which typical brightness distribution (pattern) do they possess? Is it
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possible to describe definitely
these object characteristics
by algorithms? Which image
segmentation method does
take the digital object des-
cription into account? In other
words image segmentation
methods are adapted to visu-
al object characteristics.
Bacterioplankton can be
described as "image regions
with an interior homogeneous
grey value distribution (called
plateau) and a continuously
weakly increasing resp. de-
creasing transition zone (cal-
led edge) between darker
background and brighter cell
center". Short frequent chan-
ges in grey level reflects e.g.
noise in the background
caused by amplification (Fi-
gure 1, left). Since object "plateaus" are found on different grey levels, the absolute
grey value of a pixel is not an indicator for its membership of object image regions.
For this reason thresholding is not a suitable image segmentation method in this
application. Figure 2 demonstrates, that it is impossible to find a fit threshold in an
digital image of fluorescent objects. Small variation in thresholding induces strong
differences in segmentation results concerning number and size of objects.
Gradient segmenta-
tion methods consi-
der increases and

==
10 um

Figure 2. Failed binary segmentation of
fluorescent objects by
thresholds of 235 (left) resp.
250 (right).
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Edges (=transition
zones between ob-
ject and background)
can be detected by
gradient operators.

A gradient segmenta-
tion method works
with  well balanced
quadratic arrays of
symmetric arranged Figure 3.
weights  (sum of

weights = 0) called

filter kernels (Figure 3).

In the scope of filtering an digital image 1, each pixel I(x,y) is replaced by a weighted
sum of its neighbours:

Gradient filter kernels "Mexican Hat" (G) (left)
and own design (D) (right).
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2 2
I (xy) = Z Z( | (x+k,y+l) * D (k) ). i
k=2 =2

Image filtering by (1) results in a gradient image (second derivative of the original
image). Marr and Hildreth (1980), Haberécker (1985), Smith et al. (1988) give a
detailed view into the theory of gradient operators. Arrangement and composition of
the filter kernel decide success or failure in edge detection. Some familiar operators
like the Laplacian amplify frequency noise in fluorescence images. This leads to
misinterpretations, "real" edges are not obviously distinguishable from noise. Smoot-
hing noisy images during edge detection avoids these problems. Application of Marr
and Hildreth’s "Mexican Hat" G as well as our filter kernel D (Figure 3), which is not
as noise-sensitive as kernel G, causes a smoothed center of a local image environ-
ment and an accentuation of grey level differences between margin and center. The
filter kernel’s dimension depends on the range, which is considered to be noise or a
small object. In consideration of tiny aquatic bacteria dimension 5 is advisable. Cha-
racteristics of gradient images produced by our gradient operator as well as effects on
edge detection and cell sizing by image filtering were examined on the basis of a
microsphetrical edge model. Supposing that edge characteristics (edge profiles) of
fluorescent latex beads (Figure 4) are similar to those of natural bacteria cells,
accuracy in computing cell boundaries (contours) subsequent to image filterung can
be scrutinized by means of the microsphere model.

microspheres size groups

L

C

Figure 4. Fluorescent latex beads of different sizes (A=0.27 pm, B=0.58 pm,
C=0.88 pm) used as microspherical edge model.

Figure 5¢ shows profiles over a digital image part (Figure 5a) and its corresponding
part of the gradient image (Figure 5b). The gradient curve reacts on changes in the
slope intensity of the original image profile within a 5-pixel-environment (depending on
filter kernel dimension). Negative gradient curve indicates increasing original profile
and vice versa. Therefore edges (positive peaks at the object marginal zones) are
surrounded by distinct negative peaks ("valleys"). Positive peaks overlap, if the
homogeneous object plateau between the edges is covered by the filter kernel. An
intersection cross the gradient image results in edges (above the gradient intersection
threshold level) and background resp. object interiors (below the threshold).
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Figure 5. Fluorescent latex bead within original digital image (a) and gradient
image (b). Below: profiles over original ( ) and gradient image (-*-);
“real" microsphere boundary (----).

ACCURACY

Although weak and continuous increases and decreases of grey level changes in a
digital image are marked and recognizable, one question remains; which intensity of
increase or decrease, that means which gradient level does indicate "real" object
boundary points? Calibration against fluorescent objects of known size is necessary.
Size distribution and mean diameter of three groups of latex beads were determined
by scanning electron microscopy (SEM) (Figure 6) and give a clue to results of sizing
the same microspheres by epifluorescence microscopy (digital filtering and subse-
quent edge detection described above). Small-scaled variation in gradient threshold
(80 to 120) does not influence results of sizing in a high degree; they remain nearly
stable. Figure 6 shows size distribution computed after an intersection of the gradient
image at a level of 100. The three size classes are obviously noticeable. The larger
dispersion in every size class (width of the size classes) as well as small overlaps are
due to several reasons. The rough pixel grid caused by limited image resolution is the
main one. Real microsphere sizes are not a multiple of the pixel length. Furthermore
fragments of beads, destroyed during preparation, blurred marginal zones of the
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Figure 6. Size distribution of latex beads determined by scanning electron mi-

croscopy (SEM) and digital segmentation in epifluorescence microscopy.

objective as well as unsepa-
rated adjacent microspheres
have an effect on size dis-
tribution determination.

Evaluation of mixed bead
samples containing all kinds
of microspheres illustrates
the problem of focus level
adjustment. Focus on size C
induces lost of small micro-
spheres (Figure 7). Vice
versa, if small beads (size A)
are in focus, big beads appe-
ar a little bit smaller (their
peak in the size distribution
curve extends to 9 and 10
pixels). That is the reason
why automatic plankton enu-
meration and sizing at our
institute is restricted for the
present to cells with a length

number per image

—

Figure 7.
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Effects on sizing by focus variation.
Beads of size A in focus ( ) resp.
beads of size C in focus (-*-).

under one micrometer. How to handle mixed samples (cells of different sizes and

structures) will be the next job.

During microscoping small cells logically has to be in focus in order to count all cells.
Separation of adjacent objects is a particular delicate problem in image analysis. This
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problem is tackled by taking ad-

vantage of one useful characteri- 300 Drightness & gradient level

stic of our gradient operator. Local N
changes in the trend of an edge 250

profile curve are indicated by ne-

gative peaks in the gradient curve. 200

Figure 8 demonstrates this effect.

Original and gradient profiles over 150

two adjacent microspheres (the left

one is of size C and the right of 100

size A) are displayed. Overlapping
descrescent edge profile of the big SOL

and bright microsphere and the

ascending edge profile of the small 0
and dark bead cause an interrupt 0
in the profile curve trend reflected
by a negative peak in the gradient
image. Since this peak is below
gradient threshold an intersection  Figure 8. Profiles over original ( ) and

cross the gradient image results in gradient image (-*-) part with two
a successful separation of the adjacent microspheres of size A
adjacent microspheres. (right) and size C (left), which

can be separated.
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