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ABSTRACT

A new method of analysis, applicable for lamellar micro-
structures, is presented. The method discussed enables to
evaluate the true interlamellar spacing distribution on the
basis the known random spacing distribution. The method is
applied for the coarse pearlitic microstructure.
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INTRODUCTION

Quantitative parameters describing the lamellar structure,
i.e. true Cltj’ apparent Cla) and random Clr) interlamellar

spacings are defined C(deHoff and Rhines 1968, Underwood 1970 D
and basic stereological relationships for structures of this
type are elaborated (Czarski and Ry< 1987). The aim of the
present contribution is to develop a method which enables to
evaluate interlamellar spacing distribution in the coarse
pearlite.

STEREOLOGICAL BACKGROUND

Conditional density functions for the random interlamellar
spacing fClrllt) and for the reciprocal of this spacing
fClr_llltD are given by relations (1> and 2> respectively
CCzarski and Rys$ 1987D:

a2
= . < E
£CL 11,0 =1, 1, £1 < C 10
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Taking into account the function (1) and solving the integral
equation (3D



26 CZARSKI A ET AL: INTERLAMELLAR SPACING IN PEARLITE

£€1 > = Jirfclrlltjfclt)dlt < 3>
leads to:
£C1,> =2 fCl D + 1 wile C 4>
t ltzlr r r al
r
where: fClr), fClt) — density functions for random and true

interlamellar spacings, respectively.
After simple transformations equation (4D can be presented
as CCzarski and Rys 1987):

dN C1 D
r

. _ 2 _ L 7r7
Vvtlt)l - = 4 erLClr) + 2 lr C 5

t r dl
r
where: VvClt)dlt - elementary volume fraction of the lamellar
structure with true spacing in the range from lt to
lt+ dlt y
NLCerdlr - relative number of interlamellar sSpacings in

00
the range from 1 tol + di [ N = fo N €1 Ddl ]

There exist the following relation between fClt) and VvClt)

C(Czarski and Ry$ 1987):

_ =1
VVClt) = lt E CIt)fClt) C 6O

where: EClL) — expected value.
Equation (6> is wvalid on condition that EClt) exist and
EClt)<>O.

Mean values for the random I} and true I; interlamellar

spacings are defined as CCzarski and Rys 1987):
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and it can be shown (DeHoff and Rhines 1968, Underwood 1970,
Czarski and Ry<$D that:

lr =2 lt C 95

An equation similar to equation (3) bounds the distribution
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functions fCl;l) and fClt).Taking into consideration

function (2) it can be shown for any density function fClr),

positvely definite in the finite interval ¢ x),that

ltmin'ltma

the density function £C1_ > in the interval co, 1 1= ) "
r r tmax

will take a constant value. In other words, a plateau is obser-

ved when this function is plotted and its size can be used to

estimate the ltmax value. Without any considerable error it can
be assumed that the minimum true spacing ltmin is equal to the
minimum random interlamellar spacing lrmin'

EXPERIMENTAL PROCEDURE

A model alloy Fe—Fesc C(see Table 1) was used for ex-

periments. In order to obtain a coarse pearlite the material
was austenized at the temperature 1173 K for 0.5 h and isother-
mally annealed in lead bath at the temperature 973+2 K for
3.8 h.The annealing time necessary for pearlitic transformation
was established experimentally. The microstructure was investi-—
gated by means of the optical as well as Scanning electron
microscopes (see Figs 1 and 2).

Table 1. Chemical composition of Fe—Fe3C alloy; Cwt-%

c Mn P S Cr Ni Al N Fe

0.77 0. 06 0.003 0.01 0.04 0. 03 0.01 0.006 rest

Fig.1. Coarse pearlite.
Optical microscope,
x28500,

etched by 2% picral.
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Fig.2.Coarse pearlite.
SEM, x2500,
etched by picral.

REsULTS AND DiscuUssioN

Evaluation of the distribution functions for random spacing and
its reciprocal

The measurements were performed on the optical micro-
photographs. A single measurement was shown schematically in
Fig.3. A total number of N=11548 lr measurements was taken. The

accuracy of measurements was 0.5 mm which means that 1r was

evaluated with accuracy 0.2-10_3 mm Clinear magnification of

microphotographs was x2800). The results were put in Table 2
and shown in Fig. 4.

Table 2. Empirical distribution of random interlamellar spacing
in pearlite

Class Interval Class Intervals Number Frequency

Number 1 .103. - of spacings ni/N
i r n,

A 0.4 - 0.8 938 0.0810
2 0.8 - 1.2 2418 0. 2091
3 1.2 - 1.6 2031 0.1789
4 1.6 - 2.0 1267 0.1097
85 2.0 - 2.4 875 0. 0758
6 2.4 - 2.8 596 0.0816
7 2.8 - 3.2 441 0. 0382
8 3.2 - 3.6 353 0. 0306
€] 3.6 - 4.0 282 0. 0244
10 4.0 — 4.4 231 0. 0200
11 4.4 - 4.8 202 0.0175
12 4.8 - 5.2 172 0.0149
13 5.2 - o 1748 0.1613

N = 11548
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The empirical distribution of the random distribution
reciprocal was presented in Table 3 and Fig.5. In the range
from 1.2‘3'103 to 2.5~1O3 mm_1 the distribution function in
Fig.85 is drawn with the broken line - accuracy of single lr
measurements disabled of more precise estimation of the distri-
bution in this range.

The mean 1;1 value was equal to 0.674~1O3 mm_l. Thus,
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according to (7D I} is equal to 1.545'10_3 mm_1 and (see eqn.

€O > ft is equal to 0.773+10 2 mm.

Table 3. Empirical distribution of random spacing reciprocal

Class Interval Class Intervals Number Frequency
Number 1 -1.10—3’ _— of spacings ni/N
i r n
i
1 O - 0.2083 1920 0. 1662
2 0.2083 - 0. 4166 2108 0.1823
3 0.4166 - 0.6250 2142 0.1855
4 0.628580 - 0.8333 2031 0.1789
85 0.8333 - 1.0417 1303 0.1128
6 1.0417 - 1.2800 1112 0. 0963
7 1.2800 - 1.4583
8 1.4883 - 1.6865 ] 679 D BSES
<] 1.86658 - 1.8750
10 1.8780 - 2.0833
11 2.0833 - 2.2017 2sa 2. Biea
12 2.2817 - 2.8000
N = 11548
n} np
2500} N
0,20} N =11548
2000}
0,16 |
1500}
0,12}
10005 0 06l
===9
1
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tes 1
ol 00 L L ! a3
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Fig.S, Empirical distribution of random distance reciprocal,

In the empirical lr-1 distribution (Fig.5 and Table 3) the

relative numbers ni/N in the first four class intervals varied
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within the range of 0.01932. So, it implies that the plateau
exists in the range lr_lesCO.O.833'1O3 mm_lb. From the previous
analysis (Stereological Background) 1 can be estimated as

_3 tmax _3
1.2-10 mm and the lein value can be evaluated as 0.4°10 mm

(see Fig.4 and Table 2.

For practical use of equation (4> the empirical random
interlamellar spacing distribution should be interpolated or
approximated by a continuous function or by family of functions.
It enables to evaluate a function £l D or at least its value
and derivative at given points. r

Let us divide the range of lr values into two sub-ranges:
the first Csub-range ID will cover 1 from 1 . to 1 =1

r rmin r “tmax

while the second one Csub-range IID will cover 1 from 1 =1
r r “tmax

up to infinity. We are interested in approximation in the first
sub-range as only in this sub-range the distribution function

fCltDlt=lr>o
It was stated earlier that the ltmax= 1.‘?.-10-3 mm. In or-
der to avoid an error to choose underestimated value as an

upper limit for sub-range I Ci.e. value less than real ltmax in

the microstructure analysed) the following values were choosen:
- sub-range I from 0.4-'10_3 to 1.6~1O~3 mm,
- sub-range II from 1.6-10_:.3 mm to infinity

In the sub-range considered Csub-range I) there existed three
class intervals (see Fig.4>, so every approximation would be
inaccurate. Thus, sub-range I should be divided into a larger
number of class intervals which required new, additional and
more accurate lr measurements. To improve the resolving power

and accuracy of measurements a scanning electron microscope was

applied. The specimen surface was perpendicular to the incident

beam direction to avoid any distorsion effects. Preparation

technique Cpolishing and etchingd was the same as for the

optical micrographs. However, the same accuracy of measurements

(0.5 mmd gave, thanks to the magnification x12800, a real
5

accuracy of 410 ° mm
In sub-range I NI = 1878 of individual lr values, grouped into
18 class intervals were analysed (see Table 4). Relative

numbers nIi/NI given in Table 4 could not be considered as
empirical values for the lr distribution as only measurments

from one of the two sub-ranges were taken into analysis. These
values reffered only to the sub-range I and should be multi-
plied by a factor of 0.466 Ca summ of relative numbers in
sub-range I from the first series of measurements) in order to
achieve correct values. A corrected lr empirical distribution

was shown in Fig.6. Note that the class intervals in sub-range
IT were the same in distribution presented in Fig. 4.



32 CZARSKI A ET AL: INTERLAMELLAR SPACING IN PEARLITE

Table 4. Random interlamellar spacing measured by using SEM
Csub-range ID

Class Interval Class Intervals Number Frequency
Nur.nber 1 10—3 . mm of spacings nIi/NI
i r n
Ii
1 0.40 - 0.48 16 0.0102
2 0.48 - 0.56 28 0.0178
3 0.56 - 0.64 52 0. 0330
4 0.64 - 0O0.72 79 0. 0802
5 0.72 - 0.80 o8 0. 0622
6 0.80 - 0.88 122 0.0778
7 0.88 - 0.96 129 0.0819
8 0.96 - 1.04 152 0. 0965
9 1.04 - 1.12 135 0. 0857
10 1.12 - 1.20 139 0. 0883
11 1.20 - 1.28 138 0.0876
12 1.28 - 1.36 133 0.0844
13 1.36 - 1.44 127 0. 0806
14 1.44 - 1.82 121 0. 0768
18 1.82 - 1.860 106 0.08673
NI = 1878
SUB-RANGES
Iy 1
w7
010 | 0p5f-
0,08} 004
006} 003
004 |-002|
002} 001
ol %0z 08 2 16 28 %0 52 1,x103 mm
lf“o'oesua-nmcs L rAH:O'L SUB-RANGE 1L

Fig.6., Empirical distribution of random spacing. Sub-range I
- SEM ,sub-range II - optical microscope.
AI » AII - class interval width in sub-range I and II,

respectively.
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Evaluation of the distribution function for true interlamellar

spacing

To simplify notation the parameter x = lr'103 was used in
this paragraph instead of the lr variable. Empirical distribu-

tion of the variable x in the sub-range I was described by the
following function CGersternkorn et al. 1979):

o3
TEA R 1 ACx—x S
£C30 = ———— cX—xO)"‘ P Pox 2 € 10 )
Co 3>
where: o, 3, X - constant values C o >0, > 00D
X~ translation parameter C X > 0D
C > - Euler gamma function

Parameters of the approximation function C10) were established
numerically using the last square method as:
a =385, 3=05, \=6.45 , X, = 0. 36

Function C10), with respect to the parameters evaluated, was
shown in Fig.7

ap f[l,x103)
o 9
E S=p
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=)
&

o
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8
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0020
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04 056 072 088 104 120 136 152 lrx103,mm

Fig.7. Empirical distribution of random Spacing in the sub-
range I.

Normalization of function C10) with stable parameters in the
sub-range I leads to:

X
max 1

fo)=[f fo)dx] £C0 ;X . < x < x C 11 D
1 min max

3
min
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where: x ,y X
min max

respectively C x

min

The definite integral in equation c11> was

numerically by wusing the double-point Gaussian
CFortuna et al. 1982) giving the value of 0.4721.

Function f1Cx),

=0.4 , x =1.6 >
max

described by equation (11D,

- lower and upper limits of the sub-range I,

evaluated
quadrature

could be

interpreted as probability density function in the sub-range I.

Application of the chi-square test C(Fisz 1958

enabled to
verify the hypothesis that the distribution function

described the empirical distribution of x. Using equation (4>

and function (10> a new function fCz) was evaluated,

z =1 °103

t . Minimum values of z and x were identical.

maximum z value was calculated from the condition:

max

j fCzddz =1

min

Finally, the true interlamellar spacing distribution function

took the following form:

z =1,+10" , mm

5

0.
-6.485Cz-0.38>" " " .2

fCzd = 309.12 e Ba,

(2 + 2Cz-0.36> 1 2.85—3.225(2—0.36)0'5])

0.4 < z < 1.328

C 12 >

Taking the expected value ECz)> = 0.877 from function (12> and

using (6D the function VVCz) was calculated as:

- . 3
z = lt 107 , mm

0.5 2.85
VVCZ) = 352, 47 e—6.45Cz—0.36) z(z—-0, 36D

N E-E 2C2-0.36> 11 2.85—3.225cZ—o.3630'513

0.4 < z < 1.328

C 13D

11>

where

The
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Function C12) and (13D were shown in Fig.s8
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Fig.8, Distribution fClt'loa) 12> and VvClt‘103) 13> for

analysed coarse pearlite,

CONCLUSIONS

The method presented is very time- and workconsuming.
Therefore it is not interested in metallographical practise.
From this point of view approximate solution for equation
C4> should be elaborated.

Special consideration should be paid to the distribution
of random spacing reciprocal. It seems that thanks to existing
definitions of the mean values Ceqs.(7) and (8)) and the
observed plateau which length describes the range of true
-interlamellar spacing, the distribution discussed gives more
interesting information concerning the lamellar microstructure
then the random spacing distribution.
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