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ABSTRACT

The scope of stereology is to infer characteristics of features of a three-
dimensional structure from measurements on two-dimensional (usually planar)
sections. A feature is characterized by one or more variables, x, with a probability
distribution function X(x). In a two-dimensional section one observes “prints” of
the three-dimensional features intersected, which are characterized by variables, Y,
with a measurable distribution Y(y). Provided that the variables, x, completely
define the features, it is possible to derive a relation between the 1wo
distributions, in the form of an integral equation giving explicity Y(y) as an
integral containing X(x). The integral equation is usually unsolvable for X(x) by
analytical means.

In the paper, a general method is developed to solve equations of this Llype.
The basis of the method is the discretization of the two distributions in classes,
or intervals, and the linearization of the relation between them, which can then be
solved for X(x) by standard matrix methods. The linear relation between the two
distributions involves coefficients which can be calculated with any degree of
accuracy but depend on the chosen amplitudes of the intervals,

The stability of the solutions can easily be assessed through the method
developed, and various parameters are introduced with which the stability can be
evaluated.

The method is applied to the determination of the length distribution of
oriented lines in a plane from the measurement of the number of points of
intersection with test lines of various orientations.

KEY WORDS: integral equations, stereology, stability of solutions.

INTRODUCTION

The problems that arise in stereology (e.g. DeHoff and Rhines, 1968;
Underwood, 1970) can be stated in the following way, where, for simplicity, we
consider ome-variable problems. A 3D structure contains (invisible) features of a
given type, e.g. particles, boundaries (surfaces), lines (edges), dihedral angles, etc.,
each of which is characterized by the value of a variable x (in general, more than
one variable may be considered). Examples of variables x are: particle dimensions
or volume; surface area, curvature and orientation; line length, curvature and
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orientation; dihedral angle and orientation of its edge. The features (of a given
type) have different values of x, and we assume that x is a continuous variable. It
is then possible and convenient to define a distribution function, X(x), such that
X(x)dx is the "quantity” of features, per unit volume of the sample, having values
of the variable in the interval x, x+dx (shortly, interval x,dx). By quantity is
meant, depending on the feature and on x, the number, volume, surface area or
length of the features in the interval x,dx in a reference volume. Frequently, X(x)
is defined as the fractional quantity per unit interval of x, relative to the total
quantity of features: X(x)dx is then the probability of a feature having a value of
the variable in the interval x,dx. In some problems the objective is to obtain the
total quantity of features per unit volume, i.e.,, the features are not classified.
These can be regarded as particular cases of the more general situation in which
the particles are classified by the x variables.

The scope of stereology is the determination of X(x) from measurements on
two-dimensional, usually planar, sections of the sample. These are termed “test
planes”. In some problems, the measurements are done on straight lines drawn on
the planar sections. In such cases, we may say that the 3D sample is intersected by
"test lines”. Test lines can also be used simply to study features in a two-
-dimensional structure.

The test plane intersects some of the 3D features and produces a
recognisable ”print” of the features intersécted. The print is characterized by a
measurable variable y, which has a distribution Y(y), such that Y(y)dy is the
“quantity” (or fraction relative to the total) of prints, per unit area of the test
plane, which have the variable in the interval y,dy. In general, more than one
variable y may be considered. Examples of y are: area of closed curve, length,
curvature and orientation of lines; angle. The term ”"quantity” has the same
meaning as before and can denote number, area or length of the prints (or the
corresponding fraction).

In the case of "test lines”, the prints are necessarily points or segments
between successive points; y is defined as the distance between adjacent points
(length of segments) and Y is the number (or fraction) of segments with a given
length, per unit interval of length.

The test planes and test lines can be chosen with a fixed orientation and
random location. The orientation is defined by n, the unit normal to the test plane
or test line®, When the orientation is changed, a different distribution of "prints”
may result, i.e.,, Y(y,n), in which case we say that the 3D features are oriented
(otherwise, the structure is non-oriented and the features are randomly (uniformly)
oriented). Frequently, in this case where different orientations n are used to test
the sample, the prints are not classified, i.e.,, any print, whatever the value of y,
is counted. Then it is the distribution Y(n) that is of interest, Y(m) being the
quantity of prints for orientation n.

In other problems the orientation of the test planes or lines is random, in
the sense that equal weight (equiprobability) is given to all orientations. If the
structure is oriented, sections of various orientations have to be analysed, but if
it is non-oriented any orientation of a section will be representative. In such cases,
Y is defined as an average for all (equiprobable) orientations.

In general, both the 3D features and their prints may require more than one
variable. In addition, as discussed above, the consideration of the effect of
orientation of the test plane or line introduces additional variables in Y. The
distribution functions are defined in a way similar to that used for one variable
problems. For example, X(x;, X;) is defined such that X(x,, x,)dx,dx, is the

%k
No distinction is made between opposite directions, n and -n,
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quantity of features with the variables in the intervals Xp dx; and x,,dx,.

Stated now more precisely, the scope of stereology is the determination of
the distribution X(x) from the measured distribution Y(y), where x and y indicate
collectively the variables used in the characterization of the 3D features and of
the 2D prints, respectively. Among y we may include the variables that define the
orientation of the test planes (or test lines) used to produce the print.

It will be shown in the following section that an integral equation can be
written relating the two distributions X and Y, provided that the variables x are
adequately chosen. A general method of solution of the integral equation to obtain
the distribution X(x) from an experimentally determined Y(y) is developed in the
following section followed by an application to the determination of the orientation
distribution of lines in the plane. Finally, an evaluation is made of the stability of
the solutions obtained by the method developed. It will be shown that in general
the stability may be poor but this is an intrinsic feature of the problem, and only
precise experimental sampling and measurement can lead to more accurate results,

THE INTEGRAL EQUATIONS OF STEREOLOGY

In what we shall call well-defined problems of stereology, the variables x
contain enough information on the features and an equation can be written relating
the two distributions X(x) and Y(y). This happens when:

a) The quantity P(x)dx of features x,dx that are intersected can be written in the
form

P(x) = X(x) . Po(x,y)

meaning that P(x)dx is proportional to the quantity of features x,dx and to o
function Py(x,y) which, in turn, is proportional to the relative probability of
intersection of a feature x; the dependence of Py, on y may occur in the case of
the variables y related to the orientation of the test plane or test line, but
otherwise P, is a function of the variables x exclusively.

b) The probability that an intersected feature x gives a print y,dy can be written
in the form

Py(x,y)dy

meaning that this probability is, for a given choice of the y variables, completely
determined by the x variables.

Under these conditions, the distribution Y(y) is given by the following
integral over all values of x

Y(y) = [XG0 plx,y)dx ¢h)

where
p(x,y) = Po(x,y) . Pi(x,y) (2)

is a function that can be established by theory. Note that p(x,y) is non-negative
for all values of x and y.

The best known examples of problems in stereology that give equations of
type (1) are in the field of oriented distributions of surfaces and lines which are
sectioned by test planes (or test lines) with a fixed orientation. The relevant
equations were derived by Hilliard (1962). The variables that define the orientation
of the test planes or lines are the y variables, while those defining the orientation
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of the three-dimensional features (surfaces, lines) are the x variables. In such
cases P, is a constant and p(x,y)dx is the probability that a feature .x,dx is
intersected by a test plane with orientation y.

Another example is provided by dihedral angles, x, with distribution X(x),
and its relation to the distribution Y(y) of planar angles y in sections. In this case
p(x,y)dy is the probability that a dihedral angle, x, originates an angle in the
interval y,dy. This problem was treated in detail recently (Fortes and Ferro,1988),
using the general method that will be developed below.

An important class of problems in stereology are those related to the shape
and size of particles. For example, the determination of the volume distribution of
particles from measurements in planar sections. If only the variable v(volume) is
considered, the problem is in general unsolvable because the probabilities P, and P,
previously defined cannol be expressed in terms of v only. In order to have a
well-defined problem that leads to an equation of type (1) it is necessary to
consider enough variables x related to the shape and size that allow the definition
of the probability functions Py(x) and Py(x,y). Such a set of x variables will be
termed a complete set. The variable of interest, v, is some function of the
variables x

v = v(x)

and its distribution function can be found after determining the distribution X(x)
by solving eq.(1). Alternatively, the variable (or variables) of interest can be used
as x variables, together with additional variables that define a complete set. The
distribution of the variables of interest is then obtained by integration over the
other x variables. These are then to be regarded as “auxiliary” variables.

The adequate choice of the variables x that form a complete set may
require some additional information (or some assumption) on the shape of the
particles. For example, if it is known or assumed that the particles are ellipsoidal,
then three variables x are sufficient (e.g. the semi-axes of the ellipsoids or the
volume and the two extreme semi-axes). For more complicated shapes more
variables are required. We shall not discuss the problem further but admit that a
finite number of such variables is sufficient, at least with a good degree of
accuracy, to have a well-defined problem which is then formally solved by an
equation of type (1).

SOLUTION OF INTEGRAL EQUATION FOR X(x)

The solution of eq.(1) to obtain X(x) is in general impossible by analytical
methods. Various methods were given by Hilliard (1962) to solve the equations for
oriented structures, but they are complicated and of no general applicability.
These include a second differences method and methods based on Fourier or
spherical harmonics expansions of X(x). Graphical methods for oriented structures
were recently developed by Fortes (1990). The solution of a number of stereology
problems related to size distribution of particles of a given, relatively simple
shape, are also available in the literature (some of these are described in the book
by Underwood, 1970).

In general, the solutions obtained by these methods are not stable, in the
sense that errors in the measurement of the prints, i.e. on the measurement of
Y(y), are amplified, leading to large errors in X(x).

The method that we propose to solve eq.(1) is based on the discretization of
both distributions in classes. Eq.(1) is then transformed into a system of linear
equations that can be solved by standard matrix methods. This discretization
procedure is approximate, but is legitimate because in actual problems the
experimental distribution Y(y) is obtained in the form of an histogram with
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intervals Ay of the variables y. The method is also adequate to predict the
stability of the solutions and to prove that, for particular problems, the stability
may indeed be intrinsically very poor, in the sense that any method of solution
will lead to unstable solutions.

We first describe the method for one-variable problems, i.e., one variable x
and one-variable y, Each interval, or class, of y, of amplitude Ay (which we
assume for simplicity to be the same for all intervals) is identified by yj» the
central point of the interval. The experimentally determined histogram gives the
“"amount” Y; of prints in the interval yi - Ay/2, yi + Ay/2

yi+tAy/2
Y; = /YrAW Y(y)dy ©)

It may be preferable to use, instead of Yi’ the average value Y;k of Y in the
interval Vi Ayl-:
Y.
* _ i
Y Ay 4)
Next we divide the interval of the variable x in sub-intervals of amplitude Ax,
each interval having limits X +Ax/2. As will become apparent below, it is
convenient to have the same number, n, of intervals of y and of «x. Combining
eqs.(1) and (3) we obtain
y;+Ay/2 Xy tAx/2
Y; = % fyi-Ay/Z dy ka—Ax/2 X(x)p(x,y)dx (5)

We approximate this equation by assuming X(x) to be constant in the
interval X £Ax/2 with a value Xh/Ax, where Xy is the total amount of features

in the interval. Then, defining the n? quantities

1 pyitly/2 Xy tAX/2 5
Pi = ax vi-ays2 Y / x,-Ax/2 POOYMyY = Py Ay (6)

where 15‘i is the average value of p(x,y) in the intervals of x and y under
considera{(xon, we finally obtain

Y; = % Pi Xy @)
or, in terms of the average values in the intervals,
* _ * Kk
Y = > Xk pik (€3]
with
* _ Ax
Pik = Pix Ay @

The quantity Pik can be interpreted as the contribution of a feature in the
class X, to the prints in the class V- Ea.(6) shows how this quantity can be
calculated by averaging p(x,y). The approximation leading to the final eq.(7)
contributes an error that tends to zero as Ax and Ay tend to zero.

Eq.(7) can be written in matrix form by introducing the square (n x n)
matrix P=(Pik) and column matrices Y and X with elements Yi and Xk' respectively:

Y-PX P = (P,) (10

The solution is
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X=pP'Y P = (P}) (11

provided P is non-singular as we are assuming. The elements ij are of course all
positive, but in general there will be negative P;f( Note that an interpretation of
the P;' similar to that given above for the P,, cannot be given, i.e., PIII( cannot be
interpreted in terms of a relation between classes of x and y.

Introducing line matrices X and ¥ with elements X; and Yk respectively, the
average values of the two distributions are given by

y=YyY
F=% X =G&GPMY 12)

The various moments of the two distributions can easily be calculated by
equations of the same type, involving the line matrices ¥, and ¥y, where n is an
integer, and, for example, y, contains elements yﬂ.

If the numbers ny and ny of intervals of x and y, respectively, are not the
same, the matrix P-in eq.(10) is rectangular, instead of square, and the system of
equations (10) for the unknown variables, X, will be impossible or undetermined,
respectively, for ny > ny and for ny > ny. It is therefore advantageous to take
ny = ny = n, and this is arways possible.

The generalization of the method of solution of eq.(1) to the case of more
than one variable in X and/or in Y is straightforward. For example, for three
variables x, the distribution X is defined by quantities Xik(!’ defined as the
“"amount” of features with values of the variables x,, X, X4 respectively, in the

intervals X, i% » Xp :I;A.;{2 y X ﬂ:%‘ + Quantities Py .o~ are

introduced which are proportional to the average values of p(x,y) in the intervals
ik... of y and rs... of X, These quantities have the same interpretation as before,
i.e. they are proportional to the probability that a feature in the class rs... of x
gives a print in the class ik... of y. The following equation replaces eq.7

Yik... =2 Xrs.. o Pik...rs.” 13)

r,S...

This is a system of linear equations, which can be solved for Kom .+ All that is
required is to use a contraction procedure introducing column matrices Y and X
and construct a matrix P with the pik...rs...' Eq.(13) then becomes formally
identical to eq.(7). The number ny of elements in Y is the product of the numbers
of intervals used for the various variables y; and similarly for X. The matrix P is
then a ny x ny matrix. For the reasons already explained, it is convenient to take

ny = ny. The solution X is then obtained from the inverse matrix P™' (cf. eq.(11)).

When auxiliarly variables x are introduced to have a complete set, the
distribution of the x-variables of interest is obtained by summing all the X
corresponding to each combination of intervals of those variables. It is easily
shown that the required distribution can be obtained by forming a matrix, the
elements of which are the sum of the elements of the matrix P corresponding to
the intervals of the variables of interest, with no need to calculated to entire
distribution of x-variables.

The method just describe was previously applied (Fortes and Ferro, 1988) to
the determination of 3D dihedral angle distributions from angle measurements in 2D
sections. This is a one-one variable problem (one variable x, one variable y).
Another important example of a one-one variable problem will be dealt with in the
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following section: the determination of the length distribution of oriented lines in a
plane by wusing various sets of test lines, each setl having lines of [ixed
orientation.

An example of a problem with 2x2 variables is provided by dilhedral angle
distributions in a single phase polycrystal, where the smallest and largest dihedral
angles are considered. This problem will be dealt with elsewhere.

DISTRIBUTION OF ORIENTED LINES IN A PLANE

The orientation of a line at a point is defined by a, the angle between the
tangent to the line and a fixed direction in the plane (0 < o < 7#). The length per
unit area of lines with orientation a,do is LA(a)dcv.. There is one variable x. The
orientation of the test lines is defined by the angle, 0, between the normal to the
test lines and the fixed direction (0 < § < 7). This is the variable y. For a fixed
orientation, 6, of the test lines, one counts the (average) number, per unit length,
of points of intersection with the distribution of lines. This is denoted by P (0).
The two distributions are related by (Hilliard, 1962)

PO - fIL A(@) [cos(9-c)|dat (14)

This equation can be solved for LA(O(A) using Fourier expansions of 1., and Pp
(Hilliard, 1962). A graphical solution is also possible (Fortes, 1990). Gsing the
method developed in this paper, we take AB-20" intervals of 0 and Ax=20° intervals
of « (i.e. the intervals are 0°-20°; 20°-40°; ... 160°-180°). The quantities P;'L are, from
eqgs.(5) and (9):

* _ 1
Pik = 28 ngi ank lcos(6-o) |d0d o (15)

where, for example, ABi indicates the integration interval of 0. The integrals can be
calculated analytically. The sum of the elements in a line or in a column of P* is
2. The matrix P* calculated for AB=Aoc=20" is given in Table 1. The inverse matrix
P! s given in Table 2; the sum of the elements in each line or column is 1/2.
Both matrices are symmetrical relative to both diagonals.

TABLE 1
Matrix P* for intervals of 20°
abcdeedchbd
abcdeedec
abcdeed a = ),3455
abcdece b = 0.3247
abcde c = 0.2647
abecd d =0.1728
abec e = 0.0651
ab
a

The matrix Y=PL contains the average numbers of points intersected per unit
length of test lines of orientation 8;=10°, 30"-- 170°, Each of these numbers can be
obtained by using more straight fines than those for the orientation 9]-. For
example, to obtain P; for 0,=10°, one can use test lines at 0°, 10°, 20° and take an
average value. The dlistribution of orientations of the lines is then obtained from

_ p¥-1
LA =P PL 16)
Each element of the matrix LA gives the average length, per unit area and unit

angle interval, of lines with orientation in the corresponding interval of afi.e., 0-
-20% 20°-407, ...),
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TABLE 2
Matrix P! for intervals of 20°

-21.05  20.68 -20.16  19.21 -8.898  -9.387 19.71 -20.66  21.05
-20.32 19.82 -19.32 18,57 -8.575 -9.537 19.85 -20.66

-19.34  18.88 -18.63 18.31 -8.557 -9.537  19.11

-18.42 18.21 -18.39 -18.31 -8.575 -9.387

-18.00 18.21 -18.63 18.57 -8.898

-18.42 18.88 -19.32  19.21

-19.34 19.82 -20.16

-20.32  20.68

-21.05

Multiplication of an element of L, by Aa=%/9 gives the total length per
unit area in the corresponding interval ? o.. Summing all these lengths we obtam
the total length of lines per unit volume, which is, in virtue of a property of p*
referred to above, equal to the product of /2 by the average value of the PL for
the various orientations. This is a well-known basic result of stereology (e.g.
DeHoff and Rhines, 1968).

THE STABILITY OF THE SOLUTIONS

The experimental errors in the determination of the distribution Y(y)
originate errors in the calculated distribution X(x) and it is important to assess the
stability of the solution X(x) of eq.(1). In principle, this can be done by studying
the properties of eq.(1) as regards the effect on X(x) of a perturbation in Y(y).
Alternatively one may use the linearized forms (10) and (11) to evaluate the
stability, by considering the errors in the X and Yk [t should be pointed out that
the stability of the solutions of eq.(l) is a property of this equation, independent
of the method of solution used (if eventual approximations inherent to the method
of solution are neglected).

The experimental errors in Y(y) (or in the Y:) may be due to sampling or
result from the measurement of the y wvariables. 1l"wo types of errors will be
considered, namely constant (systematic) errors and random errors. We shall also
refer to relative and absolute errors of X and Yk’ the latter being denoted by AX
and AYk , respectively.

If the relative error in Yk is constant and equal to A for all k, i.e, if
AYk )\Yk where Yk is the exact value, then obviously the relative error in X
also A\ for all i.

The important situation to assess stability is that of random errors AY,,
which may be positive or negatwe The repercussion of these errors in X; wxl
depend on the coefficients P for that ik and if the sign in all P{% is the same as
(or opposite to) that in a large amplifying effect in the error will occur.
In order to quantify this amph}(ymg effect we assume that the absolute value of
AY is a constant ¢. The maximum error, AX that may result is then ¢ > [P
all Yk had the same value, b, the corresponding  valuek olJ

would be bz P;i+ We then introduce the quantity

I Pikd
E. = amn
: >k: IPL]

which is inversely proportional to the absolute value of the maximum relative
error in X; for Yk=constant and AYk=j:E. The quantities E; can vary in the
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interval (0,1] and the maximum error in Xl- increases as Ei decreases.

The values of Ei for the matrix P*' of Table 2 are given in Table 3, The
low values indicate a poor stability of the solution.

TABLE 3
Values of,Ei for matrix P*! of Table 2 and errors A\’k= +0.1%

i E; AX; AX; AX;
bbb+ R S S BTN "
1-9 0.00311 0.0495 0.24 16.08
2-8 0.00318 0.0508 5:92 -7.89
3-7 0.00327 0.0496 -9.45 9.92
4-6 0.00336 0.0518 12,99 5.82
5 0.00341 0.0504 -14.66 1.80

* The successive signs of AYk are indicated in each case.

Ei is a measure of the maximum relative error in the corresponding Xi’ but
the maximum error cannot, in general, occur simultaneously (i.e. for the same signs
of Ayi=:te) in all Xi-

Large errors do not occur in all Xi when the P;ll( are such that their sum in
each column of P! js nearly the same in all columns. This is so because the
distribution of positive and negative elements in the lines of P! will then be more
“equilibrated” and not all lines of P! will be unfavourable in the arrangement of
the signs relative to those of a given set AY,. Therefore, the uniformity of the
sum, > P;}'( , of the elements in the columns of P g desirable for

better kstability. The matrix P*! of Table 2 satisfies this requirement since that

sum is constant (equal to 1/2). Nevertheless, the stability of the solutions of the
problem previously discussed in detail is rather poor, because of the low values of
the E;. The poor stability is evidenced in Table 3 in which the errors AX; are
calculated for AYk=;};O.1 with various sequences of +0.1 and -0.1.

The two conditions ennunciated above for a good stability of the solutions
were given in terms of the elements of P!, Conditions related to the elements of P
can also be advanced which can be derived from those ennunciated for P!, A large
value of Ei means that the sum of the elements of one sign in the i-line of P!
greatly exceeds (in absolute value) the sum of the elements of the other sign. But
P is the inverse matrix of P, so that the product of a i-line of P! by the
columns of P is zero, except for the i-column. As a consequence, and since all
elements of P are non-negative, a large Ei means that the elements in the lines of
P are far from being uniform, i.e., there are large variations between the different
elements. Indeed, if the elements of a i-line of P are all equal, the values of Ek for
k>£i are all zero. This condition of non-uniformity of the elements in the lines of
P is not fulfilled by the matrix of Table 1.

Similarly, the uniformity of the sum of the elements in successive columns
of P! implies uniformity in the sums of the lines of P, Indeed, if the sums of the
columns of P! are all equal, the same happens with the sums of the columns of P,
which is a general property of square matrices,

The uniformity of the sums of elements in the columns of P and the non-
uniformity of the sums of elements in the lines of P, means that for a better
stability the elements of P should be arranged in such a way that in each line or
column large and small elements occur, but their sum should be roughly the same
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in all columns and in all lines. This in turns means that better stability of the
X(x) solutions of eq.(1) occurs in those cases where p(x,y) changes appreciably with
x and y, but in such a way that the integrals of p(x,y)dx and of p(x,y)dy over the
entire intervals of x and y, respectively, vary little with y and X, respectively.

The stability of the solutions obtained by the discretization method can be
improved by an appropriate choice of the intervals. In general, a reduction in the
number of intervals improves the stability. For example: if the two first lines of
the matrix P in Table 2 are replaced by the sum of the corresponding elements,
which is equivalent to increasing the first interval of x from 20° to 40°, the value
of E of the new line is 0.025, larger than those of E, and E, by a factor of ~8
(see Table 3). Similarly, it is possible to sum colums of P to improve the stability.
But these improvements are obtained at the cost of a reduction in the quantity of
information that is available.

CONCLUDING REMARKS

A general method of solution of the integral equation (1) was developed,
which allows the determination of the distribution X(x) of wvariables, x,
characteristic of three dimensional features, from the experimentally measured
distribution Y(y) of variables, y, characteristic of the two-dimensional prints,
obtained by intersection with test planes. The method is quite simple and the
relevant matrix P™! can be calculated for each problem.

While the method is general, the possibility of writting an equation of type
(1) may require the introduction of more variables %, in addition to those that are
of direct interest. The choice of these variables and the determination of the
function p(x,y) in egq.(l) is an additional and sometimes complex problem that has
not been discussed here. But the introduction of additional variables x is the only
way that is left to actually solve some of the "unsolved” problems of stereology,
such as the determination of the distribution of volumes of particles (or simply
their average value) from measurements in planar sections. The additional variables
X can be regarded as auxiliary variables in the sense that the distribution of the
variables of interest can be calculated without determining the distribution of the
auxiliary variabbles.

The solutions of some equations of stereology of type (1) are unavoidably
unstable, and no method of solution can circumvent this characteristic. Only by
improving the accuracy of the experimental determination of the distribution of
the y variables, can the accuracy of the solutions be improved. The evaluation of
the stability of the solutions can be done with the help of parameters calculated
from the matrices used in the method developed in this paper.
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