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ABSTRACT

For the spatial POISSON-VORONOI tessellation, five stereological model tests based on the
distribution of the number of cell vertices in random plane sections are proposed. For some
chosen sample sizes the quantiles of the distribution of the test variables are estimated by
simulation. The power of the model tests is investigated under some special parametric

alternative hypotheses. Finally, an application to single-phage alumina ceramics is given.
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INTRODUCTION

The random VORONOI tessellation is an important model of stochastic geometry which
seems to be suitable for describing space-filling mosaic-like structures resulting from growth
processes. VORONOI tessellations have successfully been used as models in many fields of
science, e.g. in materials science, geography, astrophysics, cell biology and geology (Stoyan et
al., 1987).

A random spatial VORONOI tessellation is a random division of space into convex poly-

hedra (cells) defined with respect to a point process of germs. Each cell consists of those
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points of the space which are nearer to a given germ than to all other germs. If the germs
constitute a homogeneous POISSON point process the tessellation is called PoISSON-VORONOI
tessellation. The only parameter of this model is the intensity A >0, the mean number of
points of the underlying POISSON point process per unit volume.

Until now there are no statistical procedures allowing to check the applicability of this
model. In the development of model tests it should be taken into account that in practice a
spatial mosaic-like structure can typically not be directly observed. Only information from
linear or plane sections is available. Therefore, the aim of this and forthcoming papers is to

develop stereological model tests for the spatial POISSON-VORONOI tessellation.

Pu Pu

Figure 1. Histograms of relative frequency p of the number of cell vertices N in plane
gections of several VORONOI tessellations:
PVT (a), CVT (3), HVT (¢), and SVT (d).
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All model tests proposed here are based on the distribution of the number of cell vertices
N in random plane sections of a spatial tessellation. This distribution is independent of the
intensity of the germs (hence scale invariant) and discrete (therefore a division into classes is
straightforward). Furthermore, in practice the number of cell vertices can easily be
determined. '

In Figure 1 histograms of relative frequency of N for the POISSON-VORONOI tessellation
(PVT) and for typical examples of VORONOI tessellations are shown with respect to a
MATBRN cluster point process (CVT), a MATERN hard-core point process (HVT), and a
simple sequential inhibition point process (S3VT), respectively. For a mathematical definition
of these point processes see (Diggle, 1983) and (Stoyan et al., 1987). Obviously, the HVT and
especially the SVT is in some sense more regular than the PVT whereas the CVT is more
irregular. The knowledge about the differences in the shape of these histograms can be used in
order to find suitable test variables.

As a first test the well-known x’-lcal of goodness of fitis proposed. The probabilities p N
N =3,4, ..., that a plane section cell of a spatial PVT has N vertices were estimated by
simulation (Lors, 1991). In order to approximately satisfy the usual condition np! > 4 for all

class probabilities p! and all considered sample sizes n a division into seven classes with

pi=pyi=3, ..., 8 and p) = ﬁ Py is used (see Table 1). Consequently, the test variable
N=9
is
2
- npj)
1
S L M
where H!,i=3, ..., 8, is the absolute frequency of i-sided section cells and Hy is the absolute

frequency of the more than eight-sided section cells, respectively.

Table 1. Estimated class probabilities p} for the PVT.

P! i p}
0.00305593 7 0.18371370
0.13679820 8 0.11038764
0.20474441
0.22733316 9 0.07496600
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For all considered VORONOI tessellations the theoretical mean value of N is equal to six
(Stoyan et al., 1987). But they differ considerably with respect to the variance of N. Thus the

usual sample dispersion of N
n e
Sh=ty X W=, ()

seems to be a suitable test variable for a second model test. Obviously, tessellations with a
smaller variance of N are more regular and tessellations with a greater variance of N are more
irregular than the PVT.

By analogy, the sample skewness (CHARLIER) of N

m®
Cp= ﬁ’ @
where ["41 ]3
MP =L S =T k=23, @
i=1

denotes the sample moment of order &, can be used as test variable. Here the PVT also takes
an intermediate position. The histograms of more regular tessellations (HVT, SVT) are nearly
symmetric whereas for more irregular tessellations the histograms of N are considerably right-
skewed.

Finally, the sample kurtosis of N

_ MY
"M ?
and the test variable
V” i (Ni - W)ﬂ
Gn Vv i=1r (6)

(in analogy with GEARY’s test for the normal distribution, see e.g. Rasch et al. (1973)), which
are gensitive with respect to the kurtosis of N, are taken in consideration.

In contrast to the x’-test of goodness of fit all other tests allow to test PVT versus more
regular or more irregular tessellations, respectively. Hence, they can be performed as one-sided

tests.
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Since the number of cell vertices of meighbouring section cells is not independent. the

quantiles of the x?-distribution cannot be used for the x-test of goodness of fit. Furthermore,

in this situation the distribution of the test variables S?‘, Cp Ky, and G is completely

unknown.

In order to determine the quantiles for the proposed model tests these quantities wers

estimated by a computer simulation. The a-quantiles for the levels of significance a = 0.01,

0.025, 0.05, and 0.1 were determined for the practical important sample sizes n = 50, 100, 150,

and 200. About 7000 samples were generated for each sample size n . For details concerning

this simulation procedure see (Lorz, 1991) and (Mller et al., 1989).

Table 2. Estimated and xz-quantilea for the x')-Lest of goodness of fit

In1-a X6.1-ar
o n =50 n =100 n =150 n = 200 nooo
0.01 16.579 16.152 16.895 16.708 16.81
0.025 14.090 13.849 13.808 14.127 14.45
0.056 12.348 11.904 12.005 12.064 12.69
0.10 10.006 10.100 10.059 10.116 10.64
Table 3. Estimated quantiles '%,a"
2
n,a ]
a n=>50 n =100 n =150 n =200
0.005 1.5465 1.8476 2.0448 2.1190
0.01 1.6494 1.9390 2.1009 2.1800
0.01256 1.6902 1.9696 2.1271 2.2010
0.026 1.8127 2.0908 2.1951 2.2718
0.05 1.9592 2.1918 2.2966 2.3748
0.1 2.1224 2.3200 2.4154 2.4768
0.9 3.7143 3.464b 3.3528 3.2964
0.96 3.9984 3.6762 3.6026 3.4201
0.975 4.2466 3.8460 3.6508 3.5476
0.9876 4.4898 4.0181 3.7731 3.6619
0.99 4.5667 4.0590 3.8177 3.6828
0.9956 4.7351 4.1870 3.9396 3.8050 J
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Table 4. Estimated quantiles o

n, o
o n =50 n =100 n =150 n =200

0.006 -0.3707 -0.1662 -0.0865 -0.0346
0.01 -0.3091 -0.1196 -0.0450 -0.0001
0.01256 | -0.2904 -0.1093 -0.0330 0.0085
0.026 -0.2149 -0.0696 0.0039 0.0430

0.06 -0.1420 -0.0111 0.0530 0.0827
0.1 -0.0599 0.0565 0.1066 0.1360
0.9 0.6497 0.6768 0.5426 0.6162
0.96 0.7696 0.6646 0.6137 0.6860

0.976 0.8800 0.7472 0.6766 0.6462
0.9876 0.9966 0.8277 0.7378 0.7001
0.99 1.0260 0.8639 0.7693 0.7187
0.996 1.1312 0.9404 0.8296 0.7833

In the Tables 2, 3, and 4 the empirical quantiles tn,a l:’a, and p,a OTC given of the test
variables T, S?,, and Cy, respectively. The estimated quantiles for the x’-telt of goodness of
fit differ only slightly from the corresponding xg-quantilea.

POWER OF THE MODEL TESTS

In order to assess the power of the model tests, values of their power functions were
estimated. As special parametric alternative hypotheses the more regular HVT and SVT and
the more irregular CV'T were chosen, respectively.

The MVT as well as the SVT model can be characterized by the scale parameter \,, >0,
the mean number of points of the underlying point process per unit volume, and the shape
parameter p;, = Ay, %‘K Rgc, the mean volume fraction of the hard cores with radius R, >0
(Lora, 1990). For the HVT the parameter p,, has to be taken from the interval [0, %) whereas
for the SVT p,  can be chosen between 0 and approximately 0.4. Consequently, with the SVT
model a higher degree of regularity in the tessellation can be reached. Since in both models the
limiting case p, = 0 corresponds to the PVT, the parametric test problem can be formulated
with the simple null hypothesis p,, = 0 versus the compound alternative hypothesis p, > 0.

The model parameters of the CVT are the scale parameter A, > 0, the mean number of
points of the underlying cluster point process per unit volume, and the shape parameters

N, >0, the mean number of points per cluster, and R, > 0, the cluster radius (Stoyan et al.,
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N >0, the mean number of points per cluster, and R,y > 0, the cluster radius (STOYAN et al.,

1987). The scale dependent cluster radius R can be replaced by

A
Pa=1- ezp{N—C:l %1( R:c’l}) (1)

the probability that neighbouring clusters overlap. For N, — 1 and Py — 0 the CVT tends
to the PVT. Hence the parametric test problem consists in the simple null hypothesis Ny=1
and p, =0 versus the compound alternative hypothesis N, # 1 and p_, > 0.
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Figure 2.  Estimated values of the power functions for the sample sizes n = 100 (a) and

n =200 (b).
@ X’-test of goodness of fit (1) V7] one-sided variance test (2)
M one-sided skewness test (3) NN  one-sided kurtosis test (5)

E one-sided GEARY-test (6)
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Pho=0.2 (SVT), and N, =10 and p, =0.7 (CVT) were chosen. The intensities ), and Ay
were set to unity. About 7000 samples were generated for each model and sample size, The
results for two sample sizes are presented in Figure 2.

The most powerful of the considered tests is the variance test (2), followed by the
skewness test (3) and the x’-test of goodness of fit (1), where the skewness test is more
sensitive with respect to more regular than to more irregular tessellations. The tests (4) and
(5) can not be recommended.

As expected the power of the model tests is rather small for small sample sizes. But for
sample size n =200 a probability of the error of second kind of less than 40% is reached
(CVT). In general, it is easier to distinguish between PVT and more irregular tessellations

than between PVT and more regular tessellations.
APPLICATION TO SINGLE-PHASE ALUMINA CERAMICS

The analysis of the microstructure of metals or ceramics is an important problem in
materials science. In order to solve this problem it is necessary to find suitable models for the
investigated materials.

The spatial POISSON-VORONOI tessellation seems to be an appropriate model to describe
certain single-phase microstructures, if the pores can be neglected and the grains are
approximately polyhedra. With this model the analysis of the geometrical properties of the
spatial structure is very simple. It suffices to determine the mean number P, of vertices per
unit area or the mean boundary length L, per unit area in a plane section. The model

parameter A can then be estimated by the help of the formulae (Stoyan et al., 1987)
A=02008 PY? or  A=0.0837 L3 (8)

Finally, mean values and variances of geometric characteristics of the grains, e.g. the surface

area S and the volume V, can be obtained using (Stoyan et al., 1987; Brakke, 1985)
E(S) = 5,821 X3, Var(S) = 2,191 X™¥/3, (9)

E(V) =27, and  Var(V) =0,179 A2, (10)
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Figure 3.  Plane sections of alumina ceramics (a) and their schemes as planar tessellations

(preprocessings) (b).
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In Figure 3 parts of plane sections of three specimen of single-phase alumina ceramics are
shown together with the corresponding schemes as planar tessellations consisting of polygons.
These preprocessings are obtainded by neglecting pores and inclusions, and connecting the cell
vertices by straight line segments. Specimen I is rather regular whereas specimen III is rather
irregular. Specimen II takes an intermediate position.

In order to check the applicability of the PVT model for each specimen, the five model
tests were carried out with a level of significance o = 0.05. Both in the simulation procedures
and in the application of the model tests, only cells completely inside the observation window
were included. Hence, edge effects were treated in the same manner.

Whereas for specimen II the null hypothesis is accepted by all model tests, for specimen I
it is only the tests (3), (4), and (5), and for specimen ITI only test (5) that accept the null
hypothesis. Thus for specimen II the PVT model can be accepted and formulae (8), (9), and
(10) can be applied for the analysis.
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