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ABSTRACT

Modern advances in the old problems of quantitative
fractography have utilized the powerful relationships of
stereology, including the special equations for directed
measurements and the methods tailored to heterogeneous
structures. The procedure that has evolved has broad, general
application, and yet is amenable to simple, direct and efficient
experimental methods. It is based on profilometry, wusing
vertical sections, and requires directed measurements. Roughness
parameters provide correction factors for measurements made on
the flat SEM fractograph. These corrected values yield true
magnitudes of features in the fracture surface. Quantitative
descriptions of the fracture surface and its characteristics
permit better correlations of fractographic features with
mechanical properties and the formulation of better fracture
mechanisms.
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INTRODUCTION

The historical developments leading to modern quantitative
fractography have been amply surveyed in the recent literature
(Coster and Chermant 1983, Exner and Fripan 1985, Underwood
1986a, 1987, 1987a, Wright and Karlsson 1983). The major exper-
imental factor responsible for the current achievements is the
widespread availability of the scanning electron microscope
(SEM) and the SEM fractograph (Beachem 1969, Broek 1971, 1974,
Pelloux 1965). However, direct, uncorrected measurements made
on the SEM fractograph do not yield correct spatial magnitudes
(Underwood 1986a). The single SEM image is in actuality a two-
dimensional (reflected) projection, and lacks information in the
z-direction. An additional degree of freedom, such as that
provided by stereometry or profilometry, is necessary to
complete the spatial analysis.
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Fracture profiles have also been used extensively in
qualitative studies of fracture surfaces (Broek 1971, 1974,
Henry and Plateau). Sampling with profiles is essentially linear
in nature as opposed to point sampling by stereophotogrammetry
and area sampling by SEM. Profiles have been generated by
sectioning at various angles to the fracture surface, with
vertical sections (Shieh 1974, Pickens and Gurland 1976,
Underwood and Chakrabortty 1981) being the most convenient
experimentally. The major advantage accruing to vertical
sections is that they are prepared in ordinary metallographic
mounts. Moreover, serial sectioning is accomplished merely by
grinding away part of the mount face (Cox and Low 1974, Van
Stone and Cox 1976, Banerji and Underwood 1985, Gentier and Riss

1987). Any degree of complexity or overlap of the fracture
profile is clearly delineated and available for direct
measurements. Most importantly, planar sections in metallo-

graphic mounts reveal the underlying microstructure and its
relationship to the fracture path (Underwood and Chakrabortty
1981).

The equations and procedures described here are simple and
direct. Even so, care must be taken to conform to the require-
ments of the analysis. Equations pertaining to directed
measurements (Underwood 1970, Saltykov 1974) must be used with
measurements made in a specified direction in the vertical
sections. These equations are related to the general stereo-
logical equations based on random sampling and measurement.
However, the directed equations are not the same as the general
equations, nor do they supersede them. Rather, they complement
them and provide directional information rather than values
averaged over all directions. Because of the commonality of
direction of the vertical SEM beam, the vertical sections, and
vertical projection of the fracture profiles, we must also
define the roughness parameters R, and Ry in terms of directed
quantities.

Other methods have been employed to deal with projections.
In several publications (Wright and Karlsson 1983, Baddeley et
al. 1986, Gokhale and Underwood 1990, Wojnar and Dziadur 1987)
the authors have used average projections obtained by integra-
ting over all angles. This is not the same as projections made
in one (perpendicular) direction. The integrated quantities
serve a useful purpose for other applications (Underwood 1970,
Baddeley et al. 1986, Kendall and Moran 1963) but do not give
directional information. They should not be confused with the
procedure defined here.

We proceed now to a consideration of the quantitative
analytical relationships of fractography. The subject will be
developed briefly from its stereological origins, with emphasis
on the interrelationships between homogeneous and heterogeneous
structures, and between random and directed measurements. Then
roughness parameters and the parametric equations for estimating
the true fracture surface area of any irregular surface are
presented, followed by numerous references to the applications
of these methods.

STEREOLOGICAL RELATIONSHIPS

The basic equations of stereology have been stated and
derived in several treatises (Underwood 1970, Saltykov 1974,
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DeHoff and Rhines 1968, Weibel 1979-1980). These relationships
are statistically-exact and assumption-free, in the sense that
no crippling a priori assumptions of size or shape or angular
orientation are required. Nor need the structure be "random"*,
since if randomness of structure is not attained, then the
measurements themselves can supply the missing element of
randomness between test figure and structure.

In either case, the stereological equations are completely
valid. Other than that, there are only the usual statistical
requirements of adequate and proper sampling and a sufficient
number of measurements to satisfy the needs of the investi-
gation.

General Stereological Relationships
The general stereological equation for line length per unit
area is

Ly = (w/2) P, (1)

where P| equals the total number of intersections P of a test
line (or grid of parallel lines) with the crack trace, averaged
over all angles, and divided by the length of the test grid, L,
L, is defined as the ratio of the trace length L, to the area of
an arbitrarily chosen test area, A;. This ratio is, of course,
equal to the trace length per unit area.

Eq. (1) has been used for the analysis of crack traces.
Similar equations are available for crack surfaces (Underwood
and Chakrabortty 1981). The general stereological relationship

for the area of surfaces of any configuration, provided sampling
and measurements are performed randomly (Underwood 1970,
Saltykov 1974), is

Sy =2 P (2
where SV equals the surface area S, per unit test volume V. and
PL is the intersection count as defined for Eq. (1). Although
Eq. (2) is valid for any type of surface -- oriented, partially-

oriented or random , no information regarding the actual surface
configuration is forthcoming; only the magnitude. However,
three-dimensional sampling of the crack surface by serial
sectioning (Banerji and Underwood 1985) provides an indication
of shape.

Combinations of the stereological equations are extremely
useful. Egs. (1) and (2) combine to form the general stereo-
logical equation

Sy = (4/m) L, )
which relates the crack surface area and the trace length.
Heterogeneous Structures

The above considerations are general in nature and apply
to any type of microstructure. However, special care must be

¥ By 'random structure' we refer to that hypothetical
microstructural condition described as isotropic, uniform and
random, in both angular and locational attributes. By 'random
measurements', we mean measurements made with statistical
uniformity over the entire specimen.
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exercised when dealing with 'heterogeneous' as opposed to
'homogeneous' structures. For both types of structures,
sampling should be done with 'statistical uniformity' over the
entire specimen in order for the basic stereological equations
to be valid. For heterogeneous structures, if the test areas
are placed only at regions of high interest, there will be
different, and incorrect, results.

Alternative approaches that permit localized sampling can
be used with heterogeneous structures. These procedures are
illustrated using a closed crack with its trace exposed in the
plane of polish. It would appear, at first glance, that the
ratio of trace length to test area is meaningless, because the
choice of a larger or smaller test area (enclosing the same
trace length) would give a different value of the ratio -- see
Figure 1.

Lt

(AT)]_ W (AT)2

Fig. 1. Local sampling of heterogeneous structure. A crack trace
in two test areas.

Of course this should not happen, since the value of L, must be
constant for a particular microstructure. The correct result

depends on proper sampling. A single test area arbitrarily
placed over a portion of the crack trace certainly does not
constitute proper sampling. Rather, to use Eq. (1) directly,

we should sample the entire specimen uniformly in order to
obtain the correct value of L,.

But this procedure, although correct, is not convenient for
the purposes of our fractographic analysis. There are at least
two ways to circumvent this apparent ambiguity with
heterogeneous structures. One way is to utilize a ratio of
lengths that, being dimensionless, is independent of the size
of the test area. Consider an arbitrary test area placed over
two lines L, and L' as in Figure 2. If L, is measured for each
line according to Eq. (1), the test area terms will cancel out
because they have the same magnitude. This follows according to

(LA) trace _Lt / AT _ Lt @
(L) groj L'/ Ay L'

Instead of ratios, we can solve for the absolute value of
the microstructural feature. Equation (1) can be rewritten as
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Ly = (%/2) P A, (5)

which enables the absolute value of L, to be calculated since
the value of A; is known (an arbitrary constant). These two
methods remove the ambiguity connected with local sampling of
heterogeneous structures.

Fig. 2. Local sampling of heterogeneous structure. A crack trace
and its projection in one test area.

The same considerations as discussed above with regard to
the test area A; also apply to Eq. (2) and the choice of test
volume, Vi For the heterogeneous structure composed of a
single crack embedded in a surrounding matrix, sampling must be
performed with statistical uniformity over the entire specimen
volume in order to use Eq.(2) correctly. However, for a
fractographic analysis, we wish to use 'local’ sampling and an

arbitrary test volume. This is possible if the test volume
contains two surfaces, say S, and A'. Then, application of Eq.
(2) gives a ratio of areas as shown in Eq. (6).

(SV)suf St/VT St
— & = (6)
(SV)pmj A'/Vq Al

We see that the test volume term cancels out, regardless of its
magnitude.

The absolute area of a fracture surface can also be
obtained from Eq. (2) according to

Sy =2 PV, @

provided V; can be assessed. If serial sectioning is employed,
with n cuts a constant spacing A apart, we know that V: equals
(n+1)-A-AT. Substitution into Eq. (7) permits S, to be
calculated.

Directed Measurements

Directed measurements constitute an important complement
to random measurements (Underwood 1970, Saltykov 1974). Sections
are cut at selected locations and in preferred directions, and
subsequent measurements in these planes may be taken in a
specified direction. These procedures are frequently employed
with structures having some degree of preferred orientation in
particular directions or planes. The special equations for
directed measurements may be useful in these cases.
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Several such equations are available for lines in a plane,
an example of which is a crack trace in the plane of polish
(Underwood and Starke 1979, Underwood and Chakrabortty 1981).
One relationship that involves projected quantities in a
preferred direction is

(LA)proJ' = (PL . (8)

Here, (L )wo-represents the ratio of projected length L' of the
crack, aﬁon a chosen projection axis, to the area of the test
region Aq. (PLLL equals the number of intersections with the
crack trace per unit length of a test grid placed perpendicular
to the projection axis. Note that only one projection direction
(vertical) is employed here. In order to avoid the ambiguity
that occurs with heterogeneous structures, we can rearrange Eq.
(8) to express the projected length in absolute terms, similar
to that done above.

When dealing with directed measurements, the profile length
can be projected either as an apparent projection or a total
projection. Figure 3 illustrates the difference between the two
types of projections. The apparent projected length L' of the
crack trace between points A and B is simply the projected
length A'B' on the projection axis, regardless of reentrancies
or overlaps. On the other hand, the total projected length L"
consists of the projection (in one direction), on the projection
axis, of all segments of the curve, whether obscured or not.

=

A Pro jection Axis B!

Fig. 3. Apparent projection A'B' on the projection axis
of the crack trace AB

Directed measurements also give additional details about
specific surface configurations (Underwood, 1970, Underwood and
Chakrabortty 1981) For example, the projection equation for
surfaces based on directed measurements is

(Sy) proy = (PIL (9)

where (Sy) groj May be either the apparent or the total projection
of the surrace, projected perpendicular to the chosen projection
plane, divided by the test volume. (P)y is analogous to the
quantity described above in Eq. (8); here, however, the
subscript ; refers to a projection 1line perpendicular to a
projection plane (rather than a projection 1line). Figure 4
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depicts the difference between apparent and total projections
of surfaces and volume elements when projected in only one
direction (Underwood 1970).

Equations (8) and (9) also combine to yield the important
general projection equation based on directed measurements

(Sy) proj = (Lip) proj (10)
This equality is valid for surfaces with or without overlap

(Underwood 1990), and can be used with either the total or
apparent projection.

Particles Surfaces

P s 7

N 'tl A
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iecti “
,///’ projections AA

T
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/@ profections Aly y

Fig. 4. Apparent and total projections of particles and surfaces
(Underwood 1970)

When Equations (8), (9) and (10) are used with 1local
measurements on heterogeneous structures, the values of (LA)W'
and (SV)W i are dependent on the size of the test area or tes%
volume. "Pf the absolute values of the profile or surface
projections are used instead of the customary stereological
ratios, there is no ambiguity. The other procedure that
circumvents this problem uses dimensionless ratios as described
above.

Directed measurements are also employed to express the
fractional length of an irregular planar curve, or fractional
area of a partially-oriented surface, that is oriented in a
particular direction (Underwood 1970, . Saltykov 1974). Consid-
ering a fracture profile of length L., the fraction of oriented
length is Lo/ L., where L, is the length of just those segments
of the curve that lie in the selected orientation direction.
A parameter that expresses the degreefgf orientation of such a
partially-oriented line in a plane is 1.9, Where the subscripts
refer to lines, 1, in a plane, 2. The parameter is defined by

(P1 - (P))
£ = L ] (113
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where (P)L and (P )y are directed measurements made perpen-
dicular | and para&iel || to the selected orientation axis.

) can vary between the limits of 0 and 1, where O repre-
sen{é a completely random line (no oriented components) and 1
means a completely oriented line (a straight line parallel to
the orientation axis). In between, the trace can have any degree
of partial orientation and 0 < f)lz < 1. Note that if the
orientation axis is not selected properly, i.e., in the oriented
direction of the trace, ()12 will be negative (Wojnar et al.
1987), which is meaningless.’ ’

Parameters for the degree of orientation are also available
for surfaces of various configurations (Underwood 1970, Saltykov
1974). Applications of these parameters have been described
elsewhere (Underwood and Aloisio 1980, Underwood and Chakra-
bortty 1981), so will not be discussed here. Note that because
these orientation parameters are dimensionless, they do not
suffer a test area ambiguity when applied to heterogeneous
structures.

ROUGHNESS PARAMETERS

Several types of roughness parameters have been proposed
for profiles and surfaces (Pickens and Gurland 1976, El-Soudani
1978, Wright and Karlsson 1983, Underwood 1987). A major
selection criterion for a roughness parameter lies in its
suitability for characterizing irregular curves and surfaces.
It is desirable that a roughness parameter expresses roughness
well, relates readily to the physical situation, and equates

simply to spatial quantities. Because profiles are easily
obtained experimentally, it is natural that considerable
attention has centered on their properties. The surface

roughness parameters that have been proposed (Underwood 1987)
are not as numerous, possibly because they are too difficult to
evaluate experimentally.
Three roughness parameters have been identified that
' possess outstanding attributes for quantitative fractography.
These are Rp, the profile configuration parameter; R, the
(linear) profile roughness parameter; and Rg, the surface
roughness parameter. Other useful parameters have been proposed
for crack and microstructural characterization, and have been
described in the literature (Shieh 1974, Pickens and Gurland
1976, Underwood and Starke 1979).

Profile Parameters.

The profile configuration parameter*, Rp, is essentially
the ratio of average peak height to average peak spacing, H/W.
As such, it is sensitive to variations in the roughness, or
configuration, of an irregular planar curve. This parameter,
and its applications, have been described in the 1literature
(Underwood 1984, Underwood and Banerji 1987).

The profile roughness parameter (Pickens and Gurland 1976),
R, is a ratio of lengths. It is defined as the true profile
length divided by the apparent projected length

R =L,/ L' (12)

* Behrens EW. Personal communication 1977.
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where the prime denotes the projected length of the profile,
projected in a perpendicular direction to the selected projec-
tion axis. Since L' is a constant, R, can vary between 1 and
00, depending on the magnitude of L..  Experimental values of
R| between 1.06 and 2.39 have been reported for a variety of
materials (Underwood and Banerji 1987), corresponding to a range
of Rg values between 1.5 and 2.5,

Both Rp and R are length ratios and thus dimensionless.
Both require directed measurements for their evaluation.
However, RP is dependent on configuration, while R is defined
basically in terms of length and not configuration. This latter
point is not generally understood. An example of the primary
dependence of R, on length can be visualized with several
profiles having %he same length, but with different configur-
ations and angular orientations (random or otherwise). They all
have the same value of R|. On the other hand, a group of
profiles having the same angular frequency distribution but
different lengths will all have different values of R,.

Surface Parameters

A natural surface roughness parameter of great importance
that parallels the profile roughness parameter is Rg (E1-Soudani
1978, Underwood and Chakrabortty 1981, Wright and Karlsson
1983). It is defined as the true surface area S, divided by the
apparent projected area A', according to

Rg =S, /A'. (13)

Since A' is an arbitrary constant, S, is obtained directly once
Rg is known. Figure 5 illustrates the quantities involved in
the surface roughness parameter and its interrelationships with
R,, the projection plane A', and a test plane Ay, Since the
fracture surface is projected in a direction perpendicular to
the projection plane, we are also concerned here with directed
measurements. Rg is a ratio of areas, and thus is dimensionless,

Test Volume

Vertical Section

Fig. 5. Interrelationships of fracture surface to sections and
projections.
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It can vary between 1 and oo, depending on the magnitude of
the surface area. Moreover, R is defined primarily in .terms
of surface areas, and not the angular orientation of elements
in the fracture surface. The rationale is similar to that
presented above in discussing the length-based definition of Ry.

PARAMETRIC RELATIONSHIPS

Two roughness parameters, Rg and R have emerged as having
basic significance in the quantltatlve study of fracture
surfaces. However, Rg is difficult to evaluate, whereas R is
experimentally accessible. Thus, a relationship between Rg and
RLlS greatly to be desired. Both of these dimensionless ratios
are closely related to stereological quantities. As defined,
moreover, they both require directed measurements.

The relationship of RL and Ry to their stereological
counterparts L, and Sy is simple and direct (Underwood 1987,
Underwood and BanerJl ¥987) The equivalent equation to Eq. (3)
in terms of roughness parameters is

Rg = (4/m) R . (14)

This important equation is valid for any surface, if sampling
is performed randomly. However, we would like to restrict the
use of Eq. (14) to directed measurements only, because of the
roughness parameters. Fortunately, directed measurements can
be used with random surfaces, because a random surface should
give the same value (statistically speaking) for measurements
from any direction. Accordingly, for directed measurements
perpendicular to the effective fracture surface plane, we can
write (Underwood and Banerji 1987)

(Rg) pan = (4/) (RU)L . (15)

This equation represents a straight line when plotted in (Ry
R|)-coordinate space. It gives a practical maximum limiting
curve, based on all known experimental values. Several attempts
have been made to model fracture surfaces having specific
configurations. Noteworthy are the stepped surface (Wright and
Karlsson 1983), the vertical spike (Gokhale and Underwood 1990)
and the deep fracture (Wojnar 1988) models. The first two models
result in the equation

Rg = (%/2)[R - 1] + 1 (16)

and the other is close to it. Moreover, in early work at Georgia
Tech (Underwood 1980) with the computer simulated fracture
surface (CSFS), triangular facets were elongated by a factor of
up to 20X, giving a curve that lies slightly higher than that
for Eq. (16). Thus it is apparent that by modelling a surface
it is possible to exceed Eq. (15). However, an absolute maximum
curve has not yet been demonstrated. At the present time, it
appears that the CSFS curve is the best available upper limit
curve for the (Rg,R|)-diagram.

Other attempts to express Rg as a function of R have been
published (El-Soudani 1978, Coster and Chermant 1983, Wright and
Karlsson 1983, Cwajna et al. 1984, Gentier and Riss 1987, Wojnar
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1988), but they do not compare too well (a 38 percent spread).
Several of these attempts to establish a relationship between
R¢ and R suffer from the same defect; i.e., (RS,R )—-coordinates
o§ (1,1) and (2, m™/2) are used as terminal points instead of
(1,1) and (oo0,00) as required by the definitions of R¢ and R,
The values of R¢ = 2 and RL =q/2 are incorrect for quantitative
fractography purposes, and are obtained from the general
stereological equations for their ratios averaged over all
orientations (Kendall and Moran 1963, Underwood 1970). What
should be used instead are the directed equations for the
unidirectional (perpendicular) projection of areas or lines.
To summarize, the upper 1limit in the R —R| diagram is
dependent on modelling, as portrayed by Eq. (16). The general
fractographic equation, Eq. (14), is applicable to any surface,
of any configuration (random, partially-oriented, overlapped,

planar, etc.), provided sampling is random. R¢ is a maximum
for a given value of R|. the coefficient has the’ maximum value
of 4/% . A value of'RS lower than the maximum can not be

obtained from a random surface, of course, since the same
(maximum) value is obtained whether a random surface is sampled
randomly or with directed measurements. The only way one can
get lower values of R (for a given value of R|) is with
nonrandom surfaces that’ are sampled by directed measurements,
Intermediate values of Rg, between the limits of Egs. (15) and
(17), must derive from partially-oriented surfaces that are
evaluated with directed measurements.

The minimum values of RS, for any given values of (RUJ“
can be visualized starting with a flat surface (at Ry =1,
R = 1) that is gradually crinkled to a greater extent at higher
values of (RS,RQ. A useful model for these minimum area surfaces
is the corrugated ruled surface (Underwood 1989) whose elements
are generated by the translation of a straight line parallel to
itself. In terms of roughness parameters, we have

(Rs)m]gd = (RL)J_ (17)

where the sectioning plane is perpendicular to the elements of
the ruled surface. When plotted in (Rg, R|)-coordinate space,
Eq. (17) is a straight line lying between (1,1) and (oo,00) with
a slope of 45° Note that the coefficient in Eq. (17) has a
minimum value of 1.

Other surface configurations are possible for the
prototype minimum area surfaces. For example, the area of a
flat surface could be incrementally increased by small hillocks
or dimples. Sampling of such minimum area surfaces would have
to be done over all angles, however, just to obtain a satisfac-
tory estimate of Si. The ruled surface makes a more convenient
model inasmuch as only one vertical section is required.
Moreover, Rg¢ can be calculated directly once R, is known.

A special case of Eq. (17) is the completely oriented
surface with minimum surface area (a flat plane parallel to the
projection plane). In terms of roughness parameters it is

expressed by
(RS)or' = (RL)or (18)

which has a value of unity when directed measurements are used
as described above. The coordinates (1,1) plot as a point at
the origin of (RS,RL)—coordinate axes.
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Almost all the known experimental coordinate pairs of
(R,RL) (Underwood and Chakrabortty 1981, Wright and Karlsson
1983, Banerji and Underwood 1985, Exner and Fripan 1985, Sigl
and Exner 1987, Drury and Underwood 1987, Underwood 1989) fall
within the two limiting curves given by Egs. (15) and (17), as
shown in Figure 6. Note that most of the R¢ values have been
obtained from a modified form (Banerji and Underwood 1985) of
the analysis by Scriven and Williams (1965), and not from any
parametric equations.

Useful equations for the upper and lower limits have been
described above. A more difficult problem is to devise a
parametric equation for the partially-oriented surfaces between
the two limits. Two linear parametric curves have been proposed
as representative average curves through the limiting area in
(RS,RL)~space.

Only one of the proposed average parametric equations lies
completely within the upper and lower bounds (Underwood 1987).
It is

Rg= (4/p)[(R)y - 1 1 + 1 (19)

which represents a 'best' line through the bounded region. The
derivation of this equation (Underwood and Banerji 1983,
Underwood 1987) is based on broad, general stereological prin-
ciples, so it has wuniversal application to any nonplanar
surface. Note that the relationship is linear, with (ReR|)-
termini at (1,1) and (o00,00). An average value of ﬁs is
calculated directly from the experimental profile roughness
parameter, which leads to S according to Eq. (13).

Equation (19) appears in Figure 6 as the heavy central line
between the limit curves. The data points fall satisfactorily
around this median line, although there appears to be a trend
for the points with lower values of R to lie nearer the upper
limit.

Recently, a somewhat different parametric equation was
derived (Gokhale and Underwood 1989) from the Scriven and
Williams analysis (1965), giving

Rg= 1.16 R| . (20)

Although Eq. (20) is an approximation (the first term of a
series) and does not lie completely within the upper and lower
limits, the curve makes an excellent fit with the presently
available experimental data.

Rg is expressed in terms of one parameter in Eq. (19). A
two-parameter roughness equation for R that covers the entire
region between the limiting curves has geen proposed (Underwood
1986) (and used incorrectly (Wojnar 1988)). The correct two-
parameter equation is

Rg = [(4/w) - (4/% - 1) () ,IR,. (21)
f)az is the Degree of Orientation from Eq. (11).

APPLICATIONS

The procedures and relationships provided above can be used
to analyze actual fracture surfaces. For example, it has been
found that corrections of more than 100 percent must be applied
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3.5
Parametric Relationships

......... (Rs) = (4/m) (R,),
T Ry = (4/mIRY, - 1) 4 g

(Re) rureg = (Ry)y

3.0+
T Rs = we2)[Rp-1) ¢ 1

. " Experimental Data

Surface Roughness Parameter, Rg

O = 3340 (isochronocus)
O = <340 (1sothermal)
@ = W 16C0
A = A!l-4% Cu (95% C.L.)
O =Ti1-28% Vv
+ = Alj03-glass (R.T.)
s X = Al 03-glass (1100°C)

/. ¢ = Proﬁotype facet .

4
¥ = Alumina fiber MMC

1.0 : r r
1.0 L5 2.0 2.5

Profile Roughness Parameter, R,

Fig. 6. (RS, R)-plot of all known roughness data points and
various limiting curves.

in some cases to the values obtained from uncorrected
measurements of facets and dimples from SEM fractographs
(Underwood 1986). Subtle effects can be detected by these
quantitative methods, an example of which is the 500° ¢
embrittlement temperature of 4340 steels revealed by roughness
parameters (Banerji and Underwood 1984) and fractal dimensions
(Underwood and Banerji 1987). In another application of
roughness parameters, a modified fractal analysis of fracture
profiles yields finite values of 'true' profile length and
'true' fracture surface area (Underwood and Banerji 1986).
Numerical results have been obtained for many typical
fracture features. Among these may be listed facets (Underwood
and Chakrabortty 1981), fatigue striations (Underwood 1984),
crack traces (Underwood and Starke 1979, Underwood and
Chakrabortty 1981), dimples (Underwood and Banerji 1985) and
surface extrusions (Wang et al. 1982, Underwood 1983). Profile
overlap parameters (Underwood 1990) are analyzed in detail, as
are cells in foamed rubber (Underwood and Aloisio 1980), cavita-

tion damage (Underwood 1984), composites (Drury and Underwood
1987) and anisotropy (Drury and Underwood 1987, Gokhale and
Drury 1990). Upper-lower bounds to experimental (RyRL) data

plots are discussed (Underwood and Chakrabortty 1981), as well
as parametric roughness equations (Underwood and Banerji 1983,
Underwood 1987, Gokhale and Underwood 1989, Gokhale and Drury
1990). Serial sectioning (Underwood and Banerji 1983, Banerji
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and Underwood 1985) and profile angular distributions (Underwood
and Chakrabortty 1981, Banerji and Underwood 1985, Gokhale and
Drury 1990) are investigated. Important SEM correction equations
(Underwood 1986a, Underwood and Banerji 1987) are provided in
terms of roughness parameters. The parameters for degree of
orientation (Underwood and Aloisio 1980, Underwood and Chakra-
bortty 1981) are applied to partially-oriented structures. Other
applications based on these quantitative procedures can be
devised as required.

SUMMARY

A general stereological treatment is presented here for the
quantitative analysis of fracture surfaces. The experimental
method of choice involves the use of profiles generated by
vertical sections through the surface. It is shown how the
important profile and surface roughness parameters, R, and R
are related to basic quantities of stereology. The difference
between directed and random measurements is stressed, as well
as the precautions to observe when dealing with heterogeneous
structures. Of basic importance are the parametric roughness
equations that relate the surface and profile roughness
parameters. The simple linear equation

Rg= (4/2)[(R)y -1 ] + 1

provides a good estimate of the surface roughness parameter, Rg,
which contains the surface area. Knowing Rg and R permits the
true spatial quantities to be calculated from measurements made
on the flat SEM fractograph. Numerous applications of these
methods to specific features in the fracture surface are listed.

ACKNOWLEDGMENT

The support of the National Science Foundation, Division
of Materials Research, Grant No. DMR 8504167, is gratefully
acknowledged.

REFERENCES

Baddeley AJ, Gundersen HJG, Cruze-Orive LM. Estimation of
surface area from vertical sections, J Microscopy 1986;
142: 259-276.

Banerji K, Underwood EE. Quantitative analysis of fractographic
features in a 4340 steel, Proc. 6th Int. Congr. for Stere-
ology, Gainesville, FL., Acta Ster 1983; 2, Suppl.1l: 65-
70.

Banerji K, Underwood EE. Fracture profile analysis of heat-
treated 4340 steel, Advances in Fracture Research, (ed. by
S.R. Valluri, et al.), Pergamon Press, 1984; 2: 1371-1378.

Banerji K, Underwood EE. On estimating the fracture surface area
of Al-4%Cu alloys, Microstructural ‘Science, (ed. by S.A.
Shiels, C. Bagnall, R.E.Witkowski and G.F. Vander Voort)
Elsevier, 1985; 13: 537-551,

Beachem CD. Microscopic fracture processes, in Fracture, (ed.
by H. Liebowitz), Academic Press, 1969; 1: 243-349,.

Broek D. A study on ductile fracture, Nat. Lucht.
Ruimteraartlab, Rept. NRL (TR1021), 1971; 98-108.




ACTA STEREOL 1991; 10/2 163

Broek D. Some contributions of electron microscopy to the theory
of fracture, Int. Metallurgical Rev., 1974; 19; 135-182.

Coster M, Chermant JL. Recent developments in quantitative
fractography, Int. Metals Rev., 1983; 28, No. 4: 228-250.

Cox TB, Low JR, Jr. An investigation of the plastic fracture
of AISI 4340 and 18 nickel-200 grade maraging steels,
Metall Trans 1974; 5: 1457-1470.

Cwajna J, Maciejny A, Szala J. Contemporary state and
development trends of quantitative fractography, InZ.
materia*owa, 1984; 5: 161-176.

DeHoff RT, Rhines FN, eds. Quantitative microscopy, McGraw-Hill
Book Co., 1968,

Drury WJ, Underwood EE. Quantitative fractographic analysis of
oriented fracture surfaces, Proc. 7th Int. Congr. for
Stereology, Caen, France. Acta Ster 1987; 6, Suppl. III,
Pt.2: 549-554,

El-Soudani SM. Profilometric analysis of fracture,
Metallography, 1978; 11: 247-336.

Exner HE, Fripan M. Quantitative assessment of three-dimensional
roughness, anisotropy and angular distributions of fracture
surfaces by stereometry, J Microscopy 1985; 139, Pt. 2,
161-178.

Gentier S, Riss J. Natural fractures in rocks: stereological
estimation of areas by systematic sections, Proc.4th
European Symp. for Stereology, Goteborg, Sweden, Acta
Ster 1987; 6, Part 3, No. 1: 223-228.

Gifkins RC. Optical microscopy of metals, Pitman Publ.,
London, 1970.

Gokhale AM, Drury WJ. A General Method for Estimation of
Fracture Surface Roughness, Part IT; Practical
Considerations, Metall Trans 1990; 21A: 1201.

Gokhale AM, Underwood EE. A new parametric roughness equation
for quantitative fractography, Acta Ster 1989; 8, No.
1: 43-52,

Gokhale AM, Underwood EE. A General Method for Estimation of
Fracture Surface Roughness, Part I; Theoretical Aspects,
Metall Trans 1990; 21A: 1193.

Henry G, Plateau J., La microfractographie, Edition Métaux,
(IRSID) Anatole, Choisy-le-Roi, France. (No Yyear given).

Kendall MG and Moran PAP. Geometrical Probabilities. C. Griffin
and Co. Ltd, London. 1963.

Pelloux RM. The analysis of fracture surfaces by electron
microscopy, Met. Eng. Quart., 1965; 5, No. 26.

Pickens JR, Gurland J., Metallographic characterization of
fracture surface profiles on sectioning planes, Proc. 4th
Int Cong. for Stereology, (ed. by E.E. Underwood, R. deWit,
and G.A. Moore), NBS 431, National Bureau of Standards,
Gaithersburg, MD, 1976; 269-272.

Saltykov SA. Stereometrisches metallographie, VEB Deutscher
Verlag fiir Grundstoffindustrie, Leipzig, 1974.

Scriven RA, Williams HD. The derivation of angular distributions
of planes by sectioning methods, Trans AIME 1965; 223:
1593-1602.

Shieh WT. The relation of microstructure and fracture properties
of electron beam melted, modified SAE 4620 steels, Metall
Trans 1974; 5: 1069-1085.

Sigl LS, Exner HE. Experimental study of the mechanics of frac-
ture in WC-Co alloys, Metall Trans .1987; 18:1299-1308.



164 UNDERWOOD EE: QUANTITATIVE FRACTOGRAPHY

Underwood EE. Quantitative stereology, Addison-Wesley Publ.
Co., Reading, MA., 1970 (copyright held by the Author).

Underwood EE. Unpublished research at Georgia Tech, 1980.

Underwood EE. Practical solutions to stereological problems, in
Practical Applications of Quantitative Metallography, STP
839 (ed by J.L. McCall and J.H. Steele, Jr.), American Soc.
for Testing and Materials, Philadelphia, PA, 1984; 160-179.

Underwood EE. Estimating feature characteristics by
quantitative fractography, J Metals 1986; 38, No. 4: 30-
383.

Underwood EE. Quantitative fractography, Chap. 8 in Applied
Metallography (ed. G. H. Vander Voort), Van Nostrand
Reinhold, NY, 1986a; 101-122,

Underwood EE. Analysis of fracture roughness parameters.

Presentation at Int. Conf. on Microstructology, Univ. of
Florida, Gainesville, FL, May 7-10, 1986b.

Underwood EE. The analysis of nonplanar surfaces using
stereological and other methods, Proc. 7th Int. Cong. for
Stereology, Caen, France. Acta Ster 1987; 6, Suppl. IIT,
Pt. 2: 855-876.

Underwood EE. Stereological analysis of fracture roughness
parameters, Twenty-five years of stereology. Acta Ster
1987a; 6, Suppl. II: 169-178.

Underwood EE. The current status of modern quantitative
fractography, Proc. Seventh Int. Conf. on Fracture (ed. by
K.Salama, K. Ravi-Chandar, D.M.R. Taplin and P. Rama Rao),
Advances in Fracture Research, Pergamon Press, 1989; 5:
3391-3409.

Underwood EE. Recent Advances in Quantitative Fractography, in
ASM Materials Science Seminar 1987, (ed. by S.V. Nair, et
al.) Cincinnati, OH. 1989a; 87-109.

Underwood EE. Evaluation of Overlaps in Fracture Surfaces, in
MiCon 90: Advances in Video Technology for Microstructural

Control (ed. by G.F. Vander Voort). American Soc. for
Testing and Materials, Philadelphia, PA. 1990; STP 1094:
340.

Underwood EE, Aloisio CJ. Microstructural study of foamed

rubber, Proc. 5th Int. Cong. for Stereology (ed. by H.
Haug, H. Adam and G. Bernroider), Mikroskopie (Wien), 1980;
37, 311-319.

Underwood EE, Banerji K. Statistical analysis of facet
characteristics in a computer simulated fracture surface,
Acta Ster 1983; 2, Suppl. I: 75-80.

Underwood EE and Banerji K. Quantitative Fractographic Analysis
of Dimple Size in a 4340 Steel Fractured in Tension, Proc.
4th European Symp. for Stereology, Goteborg, Sweden. Acta
Ster 1985; 6, Suppl. I: 205-210.

Underwood EE, Banerji K. Fractals in fractography, Mater. Sci.
& Eng., 1986; 80: 1-14.

Underwood EE, Banerji K. Quantitative fractography,
Fractography, Metals Handbook, 9th Edition, American Soc.
for Metals, Metals Park, OH. 1987; 12: 193-210.

Underwood EE, Banerji K. Fractal analysis of fracture surfaces,
Fractography, Metals Handbook, 9th Edition, American Soc.
for Metals, Metals Park, OH. 1987a; 12: 211-215.




ACTA STEREOL 1991; 10/2 165

Underwood EE, Chakrabortty SB. Quantitative fractography of a
fatigued Ti-28%V alloy, Fractography and Materials Science,
(ed by L.N. Gilbertson and R.D. Zipp), American Soc. for
Testing and Materials, Philadelphia, PA. 1981; STP 733:
337-354.

Underwood EE, Starke EA Jr. Quantitative stereological methods
for analyzing important microstructural features in fatigue
of metals and alloys, Fatigue Mechanisms, (ed by J.T.

Fong) , American . Soc. for Testing and Materials,
Philadelphia, PA. 1979; STP 675: 633-682.
Van Stone RH, Cox TB. Use of fractography and sectioning

techniques to study fracture mechanisms, Fractography -
Microscopic Cracking Processes, (ed. by C.D. Beacham and
W.R. Warke), American Soc. for Testing and Materials,
Philadelphia, PA. 1976; STP600: 5-29,

Wang R, Bauer B, Mughrabi H. The Study of Surface Roughness
Profiles of Fatigued - Metals by Scanning Electron
Microscopy, Z. Metallk. 1982; 73: 30-34,

Weibel ER. Stereological methods, Vols. I & II, Academic Press,
London. 1979-1980.

Wojnar L. Evaluation of true fracture surface area by
stereometric equations, Acta Ster., 1988; 7, No. 1: 61-66,

Wojnar L, Dziadur W. Quantitative analysis of oriented ductile
fracture surfaces, Acta Ster 1987; 6, Suppl. III, Pt.
2: 883-888.

Wright K, Karlsson B. Topographic quantification of nonplanar
localized surfaces, J Microsc 1983; 130, Pt. 1: 37-51.



