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ABSTRACT

On the basis of an analogy between classical image processing problems and a
simple problem of strength of materials, an operator called A" is introduced. The
methodology is outlined and its advantages presented, starting by an elliptic
linear partial differential equation in the form A A = B, where A represents the
Laplacian. The operator's properties will not be described with mathematical
formalism, but will be applied to a series of image processing problems. They will
also be compared with those of other morphological operators, in order to prove
their advantages.
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INTRODUCTION

Edge extractions achieved in a grey tone image with a classical operator, such as
gradient, Laplacian or Sobel filters, are generally discontinuous and thick. This
process leads to many difficulties, particularly for pattern recognition or edge
reconnection and vectorization applications. An example is given in Babu and Ne-
vatia (1980).

The numerous methods described in the literature for edge thinning and
reconnection can be grouped into two families. The first one needs morphological
operators, whereas the second one is based on the nearest edges in a small
neighbourhood (the notion of proximity is here linked with the Euclidean distance
but also concerns the edge itself, the alignment of pixels and the degree of paralle-
lism in their alignments ... ). Of course, both families have advantages and
drawbacks. The methods belonging to the "morphologic" family are rather global,
and relatively systematic and quick. On the other hand, some configurations cause
mistakes as shown in figure 1.
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Figure 1 - a reconnection based on mathematical morphology.

Both rectangles are subjected to mathematical morphology operations but proper
results are obtained only in the first case. A process using the second family of
methods could take into account edge directions, alignments, or other properties,
so that case 2 of figure 1 could be easily solved.

A set of common inadequacies can be listed for the two families

° the difficulty in determining the appropriate distance
between two pixels to avoid their reconnection,

° the high sensitivity to noise,

° the inappropriateness of grey tone images.

The purpose of this article is to present a natural way to soften these drawbacks.
Some vocabulary is informally introduced leading to analogies that will be
investigated more thoroughly afterwards. Some pixels have to be added during
edge reconnection to "knit" the segments together. Consequently, a pixel "joint" is
defined as a pixel having "the highest potential" of belonging to the examinated
edge. Figure 2 gives an illustration of such "edges" pixels (dotted) and "joints"
pixels (hatched).
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Figure 2 - the pixels "joint",

The "potential” mentioned above, should take into account the relative proximity
of the segments, their alignment and orientation, and so on... Next, the hatched
pixels in figure 2 indicate the line along which the potential's value is the highest
from one segment to another. In the following part, this potential will be
presented with more details.
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ANALOGIES WITH SOME PROBLEMS OF PHYSICS

The pixels corresponding to edges of binary images can be considered as a set of
points with masses p(x,y,z) distributed on a rectangular plane. There results a

gravitational potential G, given by the equation AG(x,y,z) = -4n g . p(x,y,z), where
g is a constant.

An interpretation is also possible in terms of electrostatics. The pixels are
conceived as electrical particles q(x,y,z). This case is governed by
AV(x,y,z) = k.q(x,y,z), where V is the electrostatic potential and k is a constant.

Numerous other problems of physics are also based on the two- or three-
dimensional version of Poisson's equation A A = B. In the given examples, J, q, G
and V are functions of three real coordinates. They do not correspond to the
pixel's potential, whose nature is two-dimensional. A stationary problem of
mechanics governed by Poisson's equation is therefore selected: the bending of a
loaded thin plate.

Structures have received major interest in engineering for a long time. Numerous
models have been derived from experiments to meet the needs of the specialists in
strength of materials. The selected problem, mentioned previously, concerns a
rectangular, thin elastic plate, which is supposed to have also a constant
thickness and isotropic properties. This plate is then subjected to a load q(x,y,z)
and undergoes small deflections, as shown in figure 3.

A mathematical justification of the classical approach is proposed in Ciarlet and
Destuynder (1979), which gives the following fourth order differential equation:

- hSEq(X,y) [1]

12(1-v2)

AAF(x,y) =

where v is the Poisson's coefficient, E is Young's modulus of the plate's material, h
the thickness, q(x,y) is the load at each point, and F(x,y) the elastic deflection of
the plate.

Using appropriate coordinates and units for E, v and h (see figure 3), this equation
can be split into the following system:;

AF(x,y) =M(x,y)
AM(x,y)=q(x,y)

(2]

where M(x,y) is an unknown quantity having the dimensions of a bending
moment.

A condition must be added concerning the boundary of the plate. To that end, it is
assumed that M(x,y)=0 holds on the boundary of the plate. Actually, M(x,y) can be
associated with a flexural couple from which bending stresses can be derived.

If the thin plate cannot resist the load, it starts to crack where the stresses resul-
ting from M(x,y) are highest. Gradually, the fissures will propagate in the
direction of the highest breaking "potential”, thereby following the lines of highest
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bending moment. Even if the reality is a bit more complicated, this description of
fissuration enables the establishment of the parallel between technical mechanics
and image processing. Indeed, looking at figure 2, one can imagine the dotted
pixels to be fissures. Upon propagating, the fissures will reach hatched pixels.
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Figure 3 - appropriate axis and units for a rectangular plate.

APPLICATION TO IMAGE PROCESSING
The parallelism between thin plate cracking and edge reconnection provides a
model for a pixel's potential. A grey tone function g(x,y) exists for every image, so
that a potential function p(x,y) can be defined for each pixel by:

A p(x,y) = g(x,y) [3]
with {x,y} in [0,1] and p(x,y) =0 on the boundary.

In this equation, g(x,y) takes the place of the load q(x,y) in equation [2], while
p(x,y) replaces M(x,y). Next, equation [3] will be solved.

The unicity of the solution of [3] (given g(x,y)) is equivalent to the following
definition of the operator A™:
p(xy) = A g(x,y) [4]

Generally, the solution of equation [3] is approximated by a method of finite
differences. This method uses Taylor's formula, which gives for a size of

discretization equal to (N+1)2 (number of lines and rows of the considered image):
(4Djj - Pij.1 - Pija1 - Picgj - Pisyj ) - N = g (5]
for (i,j) from 1 to N-1.

In this set of equations, the discretization step is 1/N, gij is the value of pixel's
grey level and p; is its potential. This can be transformed into unit steps by
changing the units. As a result, the following system is obtained:

4D - Pij-1 - Pija1 - Pi-gj - Pisgj = Bjj (6]

for every (i,j} from 1 to N-1.
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(N-1)2 equations with (N-1)2 unknown quantities exist, which are solved following
Jacobi's iterative method:

4p; %V = i ® 4 py 38 4 pyy® 4+ py, 0 4 gy (71
where p;® is the kt iterated value of Djj -

Ciarlet (1988) describes this method in more detail. It is assumed that the
iterations converge regardless of the value of p;® . The limit of convergence will

be denoted A’y (gy)- For N infinite, this limit equals the value of A’ g(x,y).

AN (gy) is an approximation of A'(gy). So, A" and A’y will represent the same

operator in what follows because N is a constant depending only on the stage of

numerization. A" is the operation by which the values of pj = pylinfinite) . the

solution of equation [6] - are calculated. When the initial image is represented by
ii] and if [p; (9] corresponds to the potentials at the iteration k, then:

0| 174 | 0
[py &V =[p;®]  * V4| 0 | 14| +1/4 [gy (8]
0| 174 | o0

Consequently, the calculation of A® implies repeating a 3x3 convolution and
adding a constant until it converges.

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
255,00 255,00 25500 | 0,00] 0,00] 0,00 ] 255,00 255,00 255,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

12,96 23,09 29,20 31,84 32,50 31,84 29,20 23,09 12,95
28,73 50,20 61,88 65,67 66,30 65,67 61,88 50,19 28,73
51,76 87,09 102,44 102,65 101,36 102,64 102,44 87,08 51,76
91,22 14394 158,15 141,11 133,85 141,11 158,14 143,93 91,22
169,18 239,20 24509 | 169,78 | 151,82 | 169.78 24509 23928 169,18
91,22 143,93 158,14 141,11 133,85 141,10 158,14 143,93 91,22
51,76 87,08 102,44 10264 101,368 102,64 102,43 87,08 51,75
28,73 50,19 61,87 65,66 66,29 65,66 61,87 50,19 28,72
12,95 23,09 29,20 31,84 32,49 31,84 29,20 23,09 12,95

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
2525 81,14 86,95 | 11,64 [ 10,71 11,64 | 86,95 81,14 25,25
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Figure 4 - the values of 8ij» Pjj and the extraction of the crest line .
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Next, the result of this operator applied to a small size image (9x9 pixels) is
considered. This image reveals an edge having a discontinuity of three pixels
represented by the first array of values in figure 4. This array gives the values of
the g The second array shows the values of the potential p;;- Note that basically

a smoothing operation is performed. To get access to the pixels "joints", the line of
highest potential is considered. Such lines are simply found by application of the
Top Hat transformation, which is the difference between an image and the
opening of its grey tone function (Serra, 1986). The result of the application of A"

is represented by the third array of values. Figures 5.b and 5.c illustrate the
"potential” in the case of a binary discontinuous edge with 512 x 512 pixels after
128 iterations and 25600 iterations, respectively.

Figure 5 a - b - ¢ - visualization of the evolution of the py-

EDGE THINNING AND SKELETONIZATION OF GREY TONE IMAGES

The previous notion of line of highest potential enables a treatment of the
problem of discontinuous binarized edges. But this method also allows to handle
grey tone images of edges, especially those obtained by Laplacian or Sobel filters.
The thinning stage can be avoided as it is implicit in the notion of line of highest

potential. So, A" can be seen as a "one-pass” thinning operator.

Figure 6 - edge thinning .
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Figure 6 demonstrates the effects on a binary image. The image on the right can
be obtained after the calculation of A", followed by the detection of lines of highest

potential. Next, binarization is performed, whereupon masking is achieved with
the image on the left.

Edge thinning is a special case of skeletonization. Figure 7 shows the skeleton
obtained by following the process outlined, for simple binary images.

L

Figure 7 - skeletonization .

The method of skeletonization described can be applied to a grey tone image. The
skeleton is produced in grey levels, whereby its form will depend on grey levels of
all pixels of the image. Figure 8 presents such a skeleton after binarization on the
left, and superimposition onto the original image on the right.

Figure 8 - skeletonization of a grey tone image .

EDGE RECONNECTION

It will be demonstrated that some analogy exists with basic operators of mathe-

matical morphology (erosion, dilation, ...). To that end, the result of A! for an
image made of a single point P can be observed more closely. Figure 9 explains
this result in 3D. A surface is displayed with a vertical axis of symetry (invariant
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by rotation and translation of the Laplacian). The intersection with a horizontal
plane is a circle with a radius between zero and infinity. For a plane z=h, (0 <h <
H , H being the vertical distance of the point of turning tangent to a plane of
which the intersection circle has an infinitely large radius), parts of the surface
placed above this horizontal plane are projected on a disk with a radius R. This
disk can be considered the dilation of the point P by a ball with a radius R. For
accuracy reasons, the maximum radius of dilation is actually R° (which is a
function of the grey tone of P, and of the number of iterations). Pixels beyond R°
are not influenced by P. This influence zone is bounded by a black curve on figure
5and 9.

Figure 9 - a grid representation for the pjj-

In doing so, A" remains the dilation operator of mathematical morphology, in spite
of a completely different mathematical formulation. Nevertheless, seeing the ana-
logy makes it worth continuing the comparison with the methods of image

processing derived from mathematical morphology. A possible application of A",
seen as a dilation operator, is the reconnection of edges shown in figure 10. It is to
be noted that the larger the distance between segments ( a: 3>2>1), the narrower
the bridge formed by the pixels "joints" (c: 3<2<1).

CONCLUSION

In spite of some inconveniencies (the uncertainty in the choice of the number of
iterations and the "barbed" aspect of the result of a thinning down operation), the

operator A’ seems to be rich in possible applications. Noteworthy is the long
computational time about 1 second per iteration on a grey tone image (512x512
pixels with 256 grey levels) with a RISC machine (15 MIPS). However, the very
simple algorithm is similar to a convolution and should be treated in parallel
(skeletonization in real time).

All characteristics seen in 2D are preserved in 3D. This generalization allows to
realize a thinning down operation and a skeletonization of 3D grey tone images
made of voxels. Obviously, calculation times will be much more significant in such
cases.
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a) original b) dilated with A1 (120 iterations)
¢) eroded with A (30 iterations) d) thinning down with Al

(60 iterations)
e) classical dilation and erosion f) morphological skeleton

Figure 10 - a comparison between classical mathematical morphology and A1,
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