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ABSTRACT

Logarithmic images, such as images obtained by transmitted light or those
outcoming from the human visual system, differ physically from linear images. So, their
processing and analysis require specific mathematical laws and structures. The latter
have been developed in the setting of the Logarithmic Image Processing model (Jourlin
and Pinoli, 1985, 1987 and 1988). This model, called LIP, has already permitted the
definition of theoretical notions such as the differentiation and the integration of
logarithmic images (Pinoli, 1986 and 1987), and the well-justified introduction of
performing practical notions : blending of two logarithmic images (Jourlin and Pinoli,
1988), contrast at a point or associated with a region or a boundary (Jourlin, Pinoli,
Zeboudj, 1989 and Pinoli, 1991). Moreover, the LIP model appears to be an accurate
framework for the introduction of other powerful and useful notions. The purpose of
the present paper is to establish some of them : metrics, which appear to be naturally
linked with the optical density concept, allowing the calculation of the distance between
two logarithmic images, and also a scalar product allowing the introduction of the
orthogonality and correlation concepts.

Keywords : Correlation, image analysis, logarithmic images, metrics, orthogonality, scalar
product.
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1. RECALLS ON THE LIP MODEL
A logarithmic image can be completely modeled by its logarithmic grey tone

function. Such functions are defined on a non-empty compact set D of the plane R?
with range in the real interval [0, M[ where M is a strictly positive real number. In the
context of transmitted light the value O is reached for a point x of D which is totally
transparent, while the value M corresponds to a point which is totally opaque. As
regards the human vision, M and 0 correspond respectively to the visual dark and the
glare limit (Gonzalez and Wintz, 1987, pp. 16-19).

In order to simplify the terminologies, logarithmic images and logarithmic grey
tone functions will be called simply images and grey tone functions.

1.1. The vectorial structure on the grey tone function space (Jourlin and Pinoli, 1985,
1987 and 1988)

The laws denoted A and A permit to define the sum of two images and also
the positive homothetics associated to an image. The class of images, identified to the
class of their grey tone functions, becomes then the positive cone, denoted II, of the
set of functions defined on D and with values in the real interval ]- oo, M[ which is a

real vector space for the laws A and & The elements of this space, denoted G, are
called grey tone functions ; those of ]- oo, M[ are called grey tones.

Let us recall the definition of these laws:

FB g =trg-2E V (f.2)eG > 0

a&f=M«M(l--h%)a VfeG,Vae®R @)

Remark : The inclusion F(D,R) > II allows "reading" an image f as an element of

the space F(D, N) of real-valued functions defined on D. In this latter case, classical

addition and scalar multiplication hold. In order to avoid any confusion, an image is

denoted f when considered as an element of the space F(D, R).

1.2, Th f nes is an Euclidean s Pinoli. 1
The set of grey tones ]- e, M[ is also a real vector space, denoted E, with

respect to the laws A and A:

E = (]-w,M[,A,&) is a real vector space. 3)
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Remark: The elements of the space E, that is to say the grey tones, denoted by s, 1,
..., must be used with the laws A and & When they are considered as elements of

the real number space R, the classical addition and scalar multiplication hold. In order

to avoid any confusion in this latter case they will be denoted s, t, ...

E becomes an Euclidean space for the scalar product denoted (-1.)g and defined

for two grey tones s and ¢ according to:

1), =M21n(1-%)ln(1-ﬁ) @)

Consequently E becomes a real Banach space for the norm denoted | [.]] g and

defined for every grey tone s by :

HsHE =((s|s)E)”2=M|ln(1-TS;I—)| (5)

and then a metric space for the distance denoted dg(.,.) and defined for two arbitrary

grey tones s and ¢ by':

M-s
dg (5,0 =M In (3= ©)
where II designates the absolute value function in K.

1.3, Integration of grey tone functions (Pinoli. 1987)

For the general theory of integration in Banach spaces the reader can refer to
Bourbaki (1965 and 1967), Kolmogorov and Fomine (1977), or Dunford and Schwartz
(1988).

Let A be a measure on the spatial support D, equal to the Lebesgue measure in
the continuous setting and equal to the cardinal measure in the discrete setting, that is
to say when D is respectively a continuous or a discrete set.

A grey tone function f is integrable with respect to the measure A on the spatial
support D, if and only if, its underlying function f is such that the real-valued

function In [(1 - f/M)] is also A-integrable with the classical Lebesgue-Stieltjes meaning.

Thus f being an A -integrable grey tone function, yields :

[f )l d?t(x):M/ |1n(1-£("—))| dA(x) 0
D £ D M
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and :

f S (x) dA(x) =M - M exp (f In(1- —f—(ﬁ) d?»(x)) )
D D M

If we only consider a A-measurable subset D included in D, we obtain corresponding

formulas if we replace the set D in (7) and (8) by the subset D,
The set of A-integrable grey tone functions is a real vector space, denoted L!(E),

for the vectorial laws A and A The set of classes of A-integrable grey tone
functions according to the equivalence relation "equality A-almost everywhere" is a real

Banach space, denoted L!(E), with respect to the norm, defined by :

[f IILI(E) = fD Hr &1 dux) ©

that is to say explicitly :

[f IIL,(E) =M fD [1n (1 - fxyM) | dA(x) (10)

1.4, Integration at power p for p belonging to [1, 4+ oo [ (Pinoli, 1987)

Let p be an arbitrary real number belonging to the interval [1, + eo[. The set of

A-measurable functions f, such that the real-valued functions || f ||PE are classically

A-integrable, is a real vector space, denoted LP(E), for the vectorial laws A and &
The set of classes in the space LP(E) according to the equivalence relation "equality

A-almost everywhere" is a real Banach space, denoted LP(E), with respect to the norm

defined for a A-integrable grey tone function f by :

1/p
el o = (fD s oo Il g dx(x)) an

that is to say explicitly :
( )IIP
= ) P
[f IILP(E) =M fD lIn (1-fxyM) [P dhx) (12)

For p=2, the space L%(E) becomes a real Hilbert space with respect to the scalar
product defined for two grey tone functions f and g by :
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18) 2 = fD(f(X)Ig(X))E dA(x) (13)

or, explicitly by :

F18) 2 = M fD In (1- £, In (1 - £ ar (14)

The spaces LP(E) for p belonging to the interval [1, + oof being normed vector
spaces, they possess underlying metrics. These ones will be studied in the following

paragraph.

2. METRICS ADAPTED TO LOGARITHMIC IMAGES
The integration notion previously exposed allows distances between grey tone
functions and consequently between images to be defined.

For the general theory of metric spaces the reader can refer to Bourbaki
(1958-1961), Dunford and Schwartz (1988) or Kreyszig (1988).

2.1, Definition
For any real number p belonging to the interval [1, + oof, the corresponding
LP(E) space is a complete metric vector space (that is to say a Frechet space) with

respect to the metric, denoted dp, defined for two arbitrary grey tone functions S and g
belonging to LP(E) by :

(.8 = llf A gllLP(E) (15)
thatis to say explicitely by :
1/p
_ M- [p )
d,¢f.&) =M (fD l1n (m) 1P dix) (16)

Remark : The metric space structure being heriditary, the set of images belonging to
LP(E) is also a complete metric space with respect to the same metric.

Before to expose the corresponding expressions in the discrete case, that is to say
the discrete metrics, it appears of great interest,in a first time, to establish the link

between the metrics dp and the optical density notion (see Dainty and Shaw, 1974),

and furthermore to demonstrate that such metrics generalize a metric proposed by Pratt
(1978, p. 168).
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2.2. Links with the optical density function

For an arbitrary real number p belonging to the interval [1, + eo[ the distance
dp(f, g) between two arbitrary images f and g in LP(E) can be expressed in terms of
the optical density function of the modulus of the difference between f and g.Indeed,
the optical density function of an image h being the real-valued function, denoted D,
defined on the domain D by:

D, = -MIn(l - h/M) an

that of the image | f A g| ¢ is the real-valued function defined on the spatial domain
D by:

M-fy|

M |1n(M-g

Pyraeg = 18

So, the distance dp(f, g) equals the integral in the classical space LP(R) of the

optical density of the image |f A gl c*

2.3. The metrics d__generalize a metric proposed by Pratt (1978, p. 168)

The distance between two arbitrary elements y; and y, of the space E, that is to

say between two arbitrary grey tones, is defined by (see (6)):

d, v M ()]
E Ivyz)_M ln(M y ) (19)

2
Putting Y, =M -y, and Y,=M-y,, yields:

Y
dEo,,y2>=Mlln(f)l (20)

where |1n(Y1/Y2)| corresponds with the distance between Y, and Y, proposed by

Pratt, taking into consideration the non-linear sensitivity of the human visual system,
which is known to be logarithmic (Stockham, 1972).

The metric d; and consequently the metrics dp introduced in the LIP model bring

an important progress since they are rigorously defined in compatible vectorial
structures.

2.4. Expressions in the discrete case
In many practical situations, the grey tone functions are defined on a discrete

domain D, generally obtained after a discretization process. So, it is important to
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establish in the discrete case the corresponding expressions of the previously defined
metrics.

Suppose that D is a discrete set in 932, then the measure A on D is the cardinal
measure. The discrete metrics corresponding to the formulas (15) and (16) are defined,
for two arbitrary discrete grey tone functions S and g belonging to the space LP(E),

by :
1/p
~ M - f(x) )
d,(f,g) = M(Z [1n ( G g())I" (21)
x €D

where the real number p belongs to the interval [1, + oof.

2.5. Application

The notion of distance is very useful in image processing in all the situations
involving a quantitative comparison between images.

For example, when a given unknown image f is to be compared with a set of

images of known origin (8);=; v the closest match between the unknown f and each
of the known image g; is obtained by selecting the smallest distance value between f

and the images (g)

i=l.n*
In the context of the LIP model, this problem can be formalized by using a
previously defined metric d,. The solution g, 15 such that:

4,01 8,,) = min 4. g) 22)
Generally the chosen metric is d,(., .), which is an Euclidean distance.

Another exemple of the distance notion's usefulness exists in the area of image
thresholding (See Pratt, 1978, or Gonzalez and Wintz, 1987). Indeed, for a given image

f,one can create an associated thresholded image, denoted f, with respect to the
threshold t, by defining :
f(x) =t if f(x)>t
and f(x)=0 if fx)<t.
The optimal threshold tp being then obtained such that the distance between the

original image f and its thresholded image f, is minimal.

In the context of the LIP model, this optimization problem may be expressed by
using a previously defined metric dp. It consists in finding the threshold t, belonging
to the interval [0, M[ such that :

dp(f,f,a) = inf o d (. f) (23)

t e [0, M[
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Remark : The thresholds ¢, and ¢ are really grey tones, that is to say elements of the

space E defined above.

An illustration of the problem, but in the classical setting of linear images, is
exposed in the paper of Jourlin and Labouré (personal communication, 1987).

3. SCALAR PRODUCT AND CORRELATION
For the general theory of Hilbert spaces the reader can refer to Berberian (1961),
Schwartz (1979) or Kreyszig (1989).

3.1. Scalar product

The space L%(E) of square A-integrable grey tone functions is topologically the
powerfullest of all the LP(E) spaces. Indeed its structure is of Hilbertian nature with
respect to the scalar product, denoted (1)1 2(g) defined for two grey tone functions f

and g belonging to L%(E) by (see the formula (14)):

- M2 f(x) g(%)
718 2 =M fD In(1-—77) In (1- 227) dA(x) (24)

Remark : The scalar product between two grey tone functions f and g belonging to
L%(E) appears to be equal to the classical integral of the product of their optical
density functions.

This scalar product is a real-valued mapping. In the important particular case
involving two images f and g belonging to the Hilbert space L2(E), this scalar
product becomes positive :

flg) L&) 20 for two images f and g belonging to L2(E) (25)

Before to expose some results about the orthogonality concept, let us introduce

the angle between two non-zero grey tone functions f and g belonging to L%(E),

which is denoted Gfg and defined by :

F18) 2 06

lgll

cos 0 e

A1l 2, L

This angle will play an interesting role in the section 3.3. related to the correlation.

3.2. Orthogonality
An important specific concept of Hilbertian structures is that of orthogonality. In

the present setting, two grey tone functions f and g belonging to the real Hilbert space
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LXE) are called orthogonal if their scalar product equals zero, namely :

S and g are orthogonal if g L = 0 27)

Consequently, their angle Ofg is a square angle.

If f and g are two images belonging to the space L2(E), then they are
orthogonal (in L*(E)) if and only if they are almost nowhere strictly positive on D at
the same time (See (25)).

One of the major consequences of the concept of orthogonality is the possibility
to define and use Hilbertian basis, that is to say orthonormal complete systems. So, an
arbitrary grey tone function f belonging to L%(E) can be expressed in terms of such a
basis.

3.3. Correlation

An important notion in image processing (Ballard and Brown, 1982, Gonzalez and
Wintz, 1987), in signal processing (Oppenheim and Schafer, 1975), or in pattern
recognition (Duda and Hart, 1973), and more generally in functional analysis, is the
notion of correlation.

In the setting of the LIP model, this powerful and useful notion can be
introduced, by using the scalar product. Precisely, the correlation between two grey tone

functions f and g belonging to the real Hilbert space L%(E) is denoted ng(.) and
defined at any point y in the domain D by :
ng()') = (f Igy)LZ(E) (28)

where gy is defined as follows :
8y D> E

X = gy +x)
Explicitly yields :

Iepy) = fD (F Gl gly+x)),  dA(x) 29)

= 2 £(x) gly+x)

Remark ; If f and g are the same grey tone function, the correlation function is called
the auto-correlation function ; if S and g are different, the term cross-correlation is
normally used.
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The correlation at a point y between f and g appears as a quantitative
comparison between f and the translated g of g.One might have utilized the metric

d, to evaluate the "difference” between f and gy namely d,(f, gy), but the correlation

notion is more adapted since it takes into account the Hilbertian nature of the space

L*(E). Indeed the distance d,(f, gy) and the correlation l"fg(y) are explicitly linked by

the following formula :

d,(" g ) = llsll

2
05

2

tllg, 112,

- 2T, () (30)

Remark : One observes then that a problem of minimization with respect to the metric

d, is equivalent to a problem of maximization with respect to the correlation I

However, the correlation is not totally an adequate "measure" of difference and it
must be replaced by the normalized correlation. Precisely, the normalized correlation
between two non-zero grey tone functions f and g belonging to the Hilbert space

L%E) is denoted Yfg(.) and defined at any point y in the spatial support D, such that

the translated function gy is non-zero almost everywhere on D, by :

flg,)

vy’ LXE
Ve O T Tig oY
f ey 8y L2
So, the normalized correlation between f and g appears to be equal to :
= ) 32
Yig(y) = cos b, (32)

where Gfgy designates the angle between f and 8y (See (206)).

3.4. Expressions in the discrete case

Suppose that D is a discrete set in 92, then the measure A on D is the cardinal
measure. The discrete expressions of scalar product, correlation and normalized
correlation, corresponding to the formulas (24), (29) and (31), are defined for two
non-zero discrete grey tone functions f and g belonging to the space LZ(E)
respectively by :

T18) 2 = Mz( 2, (- ln(l-%)) (33)
x €D
T,,() = M2 ( > ma -%’;—)) In (1 --g(i’%))) 34)

xeD
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and :
) _ 8ly+x)
> ma ) In (1 BYA

xeD
Yre(y) = = w89
(Z(mu-ﬁg—’))z) (Z (mu-%))z)
x €D x €D

3.5. Applications

One of the main applications of the correlation in image processing lies in the
area of template matching, where the problem is to detect within a given image f a
replica of an object g of interest (see Pratt, 1978, Ballard and Brown, 1982, Gonzalez
and Wintz, 1987). If the template match is sufficiently close, the object is detected and
localized within the given image f and labeled as the template object g. In an
Hilbertian structure the template matching is obtained by means of the correlation.

In the context of the LIP model, this optimization problem may be expressed by
using the normalized correlation (see the previous remark). It consists in finding the

point(s) y, in the domain D such that:

Yfg(yo) = Ssup Yfg(Y) (36)
y €D

4. CONCLUSION

The present paper has used well-known powerful and useful notions and
concepts : metrics, scalar product, orthogonality, correlation, normalized correlation, closely
adapted to study logarithmic images. All the results and formulas have been exposed
both in the continuous and the discrete case, and some important applications have
been presented in the area of image comparison, image thresholding and template
matching. Another important notion can be introduced in the LIP model : the Fourier
transformation mathematically associated to logarithmic images. This transformation is
based on the notion of product and mainly on that of complex logarithmic images
(Pinoli, 1988, 1989, 1990).
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