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ABSTRACT

An analysis is given of the properties of model structures consisting of
known polyhedra. The conditions of using the Monte Carlo method which
reduce to a minimum the errors of simulation one- and two-dimensional
parameters of polyhedra are examined. Characteristics of parameters, which
are most frequently analysed in real structures, obtained as a result of the
analysis of four selected polyhedra (cube, Kelvin’s tetraidecahedron,

pentagonal and rhombic dodecahedrons) are presented.

Keywords: Polyhedron, computer simulation, random plane section, random

plane angles, stereology.
INTRODUCTION

The most frequently measured parameters of the images of metal and alloy
structures, using quantitative instruments, are: area of section, A, chord
length L, perimeter L and tangent diameters in two vertical directions
(Feret’s diameters: h;;izontal Dh ,vertical Dv ). On the basis of these
parameters, derivatives describing grain shape are calculated: F‘D=DV/Dh ;
FB=4HA/LP2 . Size distributions of the plane angles measured at the grain

section vertices provide an important information about the structure but
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this measurement is not frequently applied because it is time consuming when
made manually. However it is possible to measure these angles using
quantitative instruments (Adrian et al. 1986, Oldmixon et al. 1988). The
reconstruction of the size distribution of three-dimensional grain
parameters, using the results obtained by measuring the above mentioned
parameters, is possible only in systems of well defined grain shapes.
Different polyhedra may be considered as grain models, e.g. Kelvin’s
tetraidecahedron, rhombic or pentagonal dodecahedrons. For some phases a
cube model is appropriate. In order to obtain the size distribution of the
parameters on sections of polyhedra, a physical model was first tested (Hull
and Houk 1953). Computer developments have produced the possibility of
mathematical simulations of polyhedra sections using the Monte Carlo method
(e.g. Naumowich at al 1980, Malinski at al. 1986, Adrian 1986, Warren 1987).
Warren 1987 presents a comprehensive review of the earlier literature on the
mathematical simulations of polyhedra sections. To obtain the size
distributions of some parameters, analytical methods can be used (e.g. Itoh
1970, Sukiasian 1982, Miles 1987, Butler and Reeds 1987, Reeds and Butler
1987,Socha 1988). The Monte Carlo method has the advantage over the
analytical method in that it enables information about characteristics of
such parameters to be obtained, which is difficult (or impossible) to derive
by the analytical method because of the complexity of the calculations. Thus
the Monte Carlo Method is a useful "skeleton-key" permitting solutions of
the problems which are difficult to solve using the "key"" - analytical
method. However its shortcoming is the imperfection of applied mathematical
random-numbers generators, in fact called "pseudorandom". This is the
reason for the occurrence of systematic errors. Increasing the number of
sections in order to reduce these errors may not give the expected results
because of the well known fact that mathematical random number generators
show periodicity. The accuracy of the analysis can however be estimated
because it is possible to calculate mean values of some parameters of the
sections of a model using the relationships between them and the polyhedron
dimensions.

The aim of this work was to find the method for obtaining the
characteristics of polyhedron parameters (mean values X, standard deviation
s(x),size distributions, coefficients of variation v=s(x)/x with minimal
errors. This method was then used for analysing four polyhedra: cube,
Kelvin’s tetraidecahedron, rhombic and pentagonal dodecahedrons The

characteristics of 10 parameters of the section of polyhedra were studied.
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THEORETICAL PROPERTIES OF THE ANALYSED POLYHEDRA

Comprehensive but incomplete specifications of the theoretical parameters

for a series of solids is given by Underwood (1970). Using known

stereological relationships between the diﬁensions of polyhedra and one- or
two- dimensional parameters,

table 1.

these parameters were derived and are listed in
(1970) V,S,H" -

surface and mean length of polyhedron, M M =

The nomenclature of Underwood is used: volume,

mean and per volume unit

polyhedron curvature, A L d - mean values of area, chord length and tangent

diameter, B - dihedral angle. Kelvin’s tetraidecahedron has two dihedral

angles B, B_ and therefore the mean dihedral angle E was calculated. Mean
1 2

perimeterzp which is not mentioned in table 1 can be calculated using the
equation L = 5

Note: In tables 1-3 the notifications C, T, RD and PD mean cube, Kelvin’s

tetraidecahedron, rhombic and pentagonal dodecahedrons respectively.

Table 1.

Theoretical properties of the analysed polyhedra

(a-edge of polyhedron, W=1 + ng_ and K=tg2 (54°)tg(B/2 )).

Bl=arccos(1/3)

Bz=arccos(1/V§_)

Param. c T RD PD

v & 82 a3 16a%/(3v3 ) 2.5 K a°

s e 6Wa 82 a2 15 tg(54°)a?

H’ 1.5 a 3a 2a 7.5(n-B)a/m

A 2a%/3 | 8vh a2s3 8a2/ (33 ) Ka?/ (3(n-8))

L 2a/3 | 16v2 as(3u) 2 /(33 ) 2 tg(54°)tg(B/2)a/3

M 3ma 6ma 4ma 15(n-B)a

Mv R 3n/(4Vé_a2) 3v3 n/(4a2) 6(H—B)/(Ka2)

d a 0.5Wa /o a ntg(54°%)a/ (2(n-B))
/2 B=21/3 2n/3 2 arcsin(1/(2sin(36°)))
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METHOD OF CALCULATION

The analysis was made on isolated solids with constant dimensions. The
equations of the faces and edges of the polyhedron were defined by the
coordinate system. For generating the random secant planes and lines, two
types of random-number generators were used: multiplicative and additive

generators (Zielinski, 1970). The equation of a plane had the form:

x \/1—<p12 cos( 2mp ) +y \/1—4012 sin( 2my ) + zp =1 7 (1)

max 1

where: 1 is the maximum distance from the coordinate origin to the
max
surface of the analysed solid, e v, ¥, are the random numbers. The secant
1

plane T was created by generating three numbers ¢ Y. and v in the

intervals (-1,1), (-1,1), (0,1) respectively using t;ree independent
multiplicative generators. The coordinates of the intersection points of L
with the edges of the polyhedron were obtained by the simultanous solution
of the equation for T with the equations for the abutting edges. Only the
points belonging to the polyhedron surface were taken into account. The
intersection points were ordered following the contour. From the polygon the
following parameters were calculated: A, Lp, FB, maximum diameter D (maximum
distance between two vertices), number of the polygon sides NS and plane
angles « at each vertex. Using the next three independent multiplicative
generators the plane n, described by three number N wz and ¥, was created.
The edge of the intersection LY and n, was the axis of the polygon
projection for the Dv calculation. The second axis for obtaining Dh occurred
in LY and was perpendicular to the first axis. The shape coefficient FD was
calculated. The random secant line for finding the chord length L was
obtained from the system of the equations for planes L and L defined by
six random numbers, generated using three additive (w4, w4, 73) and three
multiplicative (ws, ws’ 74) generators. A simultaneous solution of the system
of equations for the secant line and the adjoining face of the polyhedron
enabled the coordinates of the intersection points to be found, thus
permitting calculations of the chord length L, lying inside the polyhedron.
Parameters A, D, Lp, Dv, Dh’,L, FB have been normalised with respect to
their maximum values. For each polyhedron 250,000 active sections and chords
lying inside the solid were used. The numbers of all sections (nAC) and
lines (nLC) were stored.In the range of 250,000 active sections and chords
starting from 100, 000, the optimum characteristics of the analysed

polyhedron were sought. The optimum characteristics are regarded to be the
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mean values, coefficients of variation and size distributions of all the
parameters obtained for such a number of sections, (nAO), Feret’ diameters,
(nno)’ and chords, (nLO),So that appropriate errors are minimised. As the
optimum criteria, three errors were calculated for each section and chord

using the theoretical mean values of parameters listed in table 1:

A, =(AA)Z + (ALP)Z + (ha)? (2)
_ 2 2

8, = (D)% + (4D ) (3)

A = \AL! (4)

3

where: AX is the relative error (in %) of parameter X (AX=100%* (X —Xt)/Xt),
m
where X and Xt are measured and theoretical values of parameter X, The
m

optimum characteristics of A, D, L, FB, «, and N were found on the basis
P s

of Al being a minimum, Dv, Dh and FD - using A2 and L - using As' The
numbers for nAC, nLC, nAO, nLO,nDO are listed in table 2.
Table 2.
Numbers of total sections, lines (nAC, nLC) and optimum sections, tangent

diameters, chord length (nAD, n nLO) for analysed polyhedra.
[

Number C T P D R D

nAC 288, 660 263,542 265,098 288,667

nAO 120, 683 246,187 225,463 162,875

nLC 636, 949 475,290 484,417 599, 588

nLO 142, 952 180,634 204, 188 102, 744

nDO 212,995 120,752 151,764 106,726J

RESULTS AND DISCUSSION

Fig.1 shows the dependence of the relative errors AA, Aw, ALpand A1 for
Kelvin’s tetraidecahedron calculated for every 1000 active sections and
chords as a function of the number of sections. A similiar dependence was
observed for other errors (ADV or ADh, Az’ AL) of the polyhedra which were
studied. Presented errors oscilate around O but it has to be noted that
analysed errors AA, AL , DAa do not reach 0 at the same section number.
Therefore we cannot uZe Just one type of error to find the optimum

characteristics of all the parameters. The function A1 = f(N) shows that
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with an increasing number of sections the sum squares of errors generally

tends to O but the assumption of a definite number of sections does not
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Fig.1.Dependence of errors of area of section AA, plane angle Ax, perimeter
ALp and A1 as a function of the number of sections of Kelvin’s

tetraidecahedron. Note: nAO =246, 187.

secure a minimum in the errors even if this number is as large as 200, 000.
The way to find the characteristics of the optimum parameters is correct for
the case where several interconnected parameters are generated. Optimum
characteristics tend to be ideal when the errors of all the parameters tend
to 0 but when_only one parameter is generated (e.g. chord length L) this may
give incorrect results and an increasing number of analysed elements leads
to an improvement in accuracy of the analysis.

The results of the analysis are presented in tables 3,4 and in figures 2-9.
Table 3 contains frequency distributions of the polygon sides A comparison
of the frequency distributions of the polygon sides for a cube with the data
obtained by Sukiasian (1982) using the analytical method, has shown that
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differences do not exceed 0.1%,.

Table 3.

Frequency distributions (in %) of polygon sides N for analysed polyhedra.
s

NS C T PD RD

3 27.9783 7.2502 9.2463 4.020

4 48.6340 13. 4032 13. 0070 13.3925
S 18.7856 11.8134 19.1131 16.1584
6 4.6021 31.2194 29.8146 29.9708
7 _ 18. 2300 19.6884. 19.0152
8 _ 13.1526 7.5046 16.3340
9 _ 3.8475 0.8094 1.1082
10 1.0837 0.8165

In table 4 the mean values of the parameters X, coefficients of variation
v, and relative errors AX are given. These errors do not exceed 2*10_2%. As
can be seen from table 4 the mean section for a cube is square (a = 90°, Ns

=4).The mean sections for Kelvin’s tetraidecahedron and the rhombic

dodecahedron are identical - regular hexagon (a¢ = 120 , N = 6).

Table 4.
Mean values X, coefficients of variation v, relative errors X

obtained with use of minimum errors criterion.

Cube Kelvinfs tetraidecahedron

Par., X v AX! X v AX

A 0.47140| 0.64187| 1.88*10 > |0.53874 |0.53187 1.76%107°
D 0.66975| 0.36163 - 0.76339 |0.29104 -

L, 0.65067| 0.38782| 3.37*10™° |0.72615 |0.32341 2.02%107°
L 0.38490| 0.58820| 1.69*10°° |0.53429 |0.47176 2.20%10°¢
D, 0.57746| 0.40962| 1.92*10™% |0.70597 |0.32992 1.93*107%
D, 0.57725| 0.40976| 1.40*10™% |0.70577 |0.33068 1.00%1074
Fy 0.66942| 0.21487 - 0.81177 |0.17476 -

By 1.06115( 0.46312 - 1.03119 |0.31264 -

« [°1]90.0026| 0.27332| 2.90%10™5 |120. 0042 0.19239| 3.52%107°
N, 4.00012| 0.2018 - 6.00042 (0. 26534 -
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Table 4. - continue.
Rhombic dodecahedron Pentagonal dodecahedron
A 0.54433 |0.56457 |3.98*10°° |0.57568 |0.53760 |6.93%107>
D 0.67578 |0.33457 = 0.75153 |0.29803 =
Lp 0.68017 |0.35992 8.15*10_6 0.74484 |0.32964 5.15"‘10_5
L 0.47131 |0.47805 1.93*10_4 0.52977 |0.47402 2.01*’*10—11
Dv 0.61235 |0.36842 4.21*10_5 0.69679 |(0.33592 1.84"‘10—7
D, 0.61234 |0.36782 [4.55*107° |0.69679 |0.33566 |5.40%10™8
FB 0.81493 |0. 15638 = 0.80971 (0.17914 =
FD 1.02478 |0.37341 - 1.02831 |0.31300 =
o [O] 120.0002 (0. 18322 1.53*10_6 116.5668|0. 19331 1.48*10_8
NS 6.00002 |[0.23584 = 5.67526 |0.25768 =
4.5
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Fig.2. Frequency distributions of area of section, A.
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Fig.3. Frequency distributions of maximum diameter D
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Fig.4. Frequency distributions of perimeter of section L .
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Fig.5. Frequency distributions of shape coefficient F .
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Fig.6. Frequency distributions of tangent diameter D
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Fig.7. Frequency distributions of shape coefficient FD
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Fig.8. Frequency distributions of chord length L.
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Fig.9. Frequency distributions of plane angles a .

Coefficients of variation for these parameters enable these polyhedra to be
differentiated. It is worth mentioning that the mean values for the
coefficients of shape FD for all polyhedra exceed a value of 1. Size
distributions of FD are similiar for all polyhedra but different frequencies
at modal values make it possible to distinguish between them. For polyhedra
which are assumed as grain models of monophased structures, the shape of the
size distribution for some parameters (A, D, FB o, Dv or Dh) makes it
possible to distinguish between these polyhedral shapes. They can be used in
practice to identify the shape of the grains in homogenous structures, The
most useful seems to be the size distribution of plane angles (fig.

9), showing singularities at angles equal to dihedral angles of polyhedra.
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