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ABSTRACT

A specimen containing spherical particles each of which has a concentric
spherical core is sectioned by an IUR plane. The profiles in the plane are a
mixture of discs and annular rings. Formulae are given which relate the size
distributions of the profiles to that of the particles.
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INTRODUCTION

The problem comes from embryology. We are presented with a flask
containing a colourless liquid, which we are told contains a suspension of
invisible colourless cells. We seek their size distribution. First an opaque
material that binds to the surface of the cells is introduced. The cells are
rendered visible but their sizes cannot be directly observed because they are
hidden within an opaque coating. A transparent resin is added which solidifies
the contents of the flask. We now have a solid block containing coated cells
in a transparent matrix. The stereological procedure is to take a plane
section at random through the block. The result is a probability sample of
sections of cells. The randomness is to ensure that there is no systematic
bias. The randomness needs qualification since, even if it is expressed as
“uniformly at random", this does not make for a unique specification. See for
example Bertrand (1888) or Coleman (1988b). Here we require the randomness
designated IUR (isotropic uniform random) by stereologists.

The profiles are either annular rings or discs, depending on whether or
not the sectioning plane cuts the core of the shell. We observe the sizes of
the rings and discs, and their intensities (the numbers of each per unit area
of the section). The problem is to obtain estimates of the size distribution
of the shells, that is to say, the joint distribution of their inner and outer
radii, and their intensity (the expected number of shells per unit volume of
the specimen). This is thus a generalization of the Wicksell corpuscle problem
(Wicksell, 1925). Indeed, if the cores were not there, or the shells had zero
thickness, we would have Wicksell’s formulation.

The problem of this paper was first discussed in Bogataj (1980). Coleman
(1986) gave a distribution-free estimation procedure for shells sectioned by a
thin slice and was based on methods developed by Saltykov (see Weibel, 1980,
Chapter 6). Simple adaptive methods of selecting the size classes have been
demonstrated in a simulation exercise (Yan, 1989).
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Recently, new stereological tools (Gundersen et al., 1988) and the need
to study non-spherical particles have diminished the importance of Wicksell
sampling. Despite this, the new formulae given below solve a problem of

geometrical probability that has been awaiting solution for some time.

THE MODEL AND RESULTS
The shells

A typical shell will have an outer radius a and an inner radius b taken
from a distribution which has the joint distribution function FS , with the
marginal expectations M, = Ea and By = Eb . The shell centres will have
intensity As . We let f's(a,b) denote the probability density function (pdf)
for (a,b) (expressed as a convex combination of delta functions if the

distribution is discrete).

The ring profiles

A typical ring profile will have an outer radius a, and an inner radius
b0 . We let FR denote the joint distribution function for these radii, and let
f‘R(ao,bo) denote the corresponding pdf. The intensity (the expected number of
ring centres per unit area of the section) will be denoted by AR . If a shell

having radii pair (a,b) has its centre a distance z from the plane section,

then, for a ring profile, the section must cut its core so we must have b > z.

From simple geometry
(a,b) = (V(a’-z%),V(b*-z%)),

_ 2 2, _ 2 .2
z = V(a ao) = V(b bo)’

o
n

\/(b2+(a§—b§)), b= \/(az-(as—bi)).
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The disc profiles

A typical disc profile will have a radius r. We let FD denote the
distribution function for the radii, and let fD(r‘) denote the corresponding
pdf. The intensity (the expected number of disc centres per unit area of the
section) will be denoted by AD . If a shell having radii pair (a,b) has its
centre at a distance z from the plane section, then, for a disc profile, the

section must miss its core so we must have b < z < a. From simple geometry

r = V(a*-z?). (8)
THEOREN 2.
2 2
Il i J‘/‘a""r—fs(a,b) db da )
» HyH V(a2-r?)
for 0 =r < o .
AD = ZAS(MA—MB) . (8)

We note that the relationship between the distributions of the (outer) radii
of the profiles and of the shells is given by the Wicksell formula. This is
verified by noting that

p M, -H
i fR(ao)]a . fpirl
“.A [¢] “A

1 a (a®-r?)
—_ + f (bla) db f (a) da
By J.—r‘ V(a2-r?) { [jb=\/(a2—r~2) J:=O ] s | s

= % f‘s(a) da . (9)

=r \/(a -r?)

where f‘R( ao) is the marginal pdf for a, when we integrate f‘R(aO.bo) with
respect to bo' The right hand side is the form of f‘P(r'), the profile radius
density, given by Wicksell’s integral, while the left hand side is a mixture
of the ring profile outer radius density and the disc profile radius density,

the mixture being taken in the ratio AR to AD

THE INVERSE PROBLEM

We have expressions for the size distributions of the profiles in terms
of that for the shells. We seek to invert the relationships by deriving an
expression for fs(a,b) in terms of fR(aO,bO) and f‘D(P). We can go some way

towards a formal inversion by obtaining f‘s(a,b) in terms of fR(aO,bo). In
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practice however the numerical inversion of integral relationships like these
is notoriously unstable, and direct substitution of an estimate of fR cannot

be relied upon to give a satisfactory estimate of f‘s .

THEOREM 3.

[s5})

2 ‘0

_ 1

fs(a, b)/(ab) = T J Vm W {fR(aO’bO)/(aObO)} dbO ) (10)
b, =b o °

on 0 =b =a< o, where, in the integrand, we take a, = \/(b§+(a2—b2)}

We cannot complete the inversion by obtaining f‘S in terms of f‘D , since

the disc diameters do not contain sufficient information about the shells.

Methods of unfolding (as this inversion is referred to by stereologists)
are briefly reviewed in Coleman (1989a). In particular, if f‘S is from a
parametric family of distributions, f‘R and fD will be from parametric families
also, and they will be parameterized by the same parameter as f‘S. The data

from f‘R and fD will allow identification of this parameter.

REMARKS ON THE PROOFS OF THE THEOREMS

Theorems 1 and 2

These were proved using the stochastic geometry method, as set out in
Stoyan, Kendall & Mecke (1987). The features are modelled as a stationary
marked point process (SMPP) of geometric objects. The points give the
locations of the features, the marks describe their sizes. The coordinates of
a location and a mark when taken together specify a point on a manifold. The
process of features is thus modelled as a process of points, the associated
point process (APP). The probabilistic description of the features can then be
made in terms of the counting measure of the point process. An operation on
the SMPP will lead to another process, the derived SMPP. In the case of
stereology, this is the process of profiles seen in the section. By comparing
the counting measures of the corresponding APPs and using factorizations that
arise from invariance properties, relationships are obtained between the
distributions of the sizes of the geometric objects and of the derived
profiles. The proofs are not appropriate for presentation in this paper, but
may be obtained as a technical report from the author.

The first order characteristics of SMPPs are the intensity (the expected
number per unit volume) and the mark distribution, and in respect of these it
does not matter whether geometrical probability or the stochastic geometry
method is used. Geometrical probability in principle requires only elementary
probability theory and very simple geometry, but the mixture of profiles is
awkward. The discs have a one-dimensional size distribution, while that of the
annular rings is two-dimensional. No such difficulty arises in the stochastic
geometry method. It keeps the discs and the rings separate.
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Theorem 3

From the geometry of the shells

zZ = a -b" = a’-bp

141

(11)

We transform the pdf for (a,b) to that for (b,z), and the pdf for (a b ) to

that for (b »z). Then the mapping can be taken from b to b keeping z flxed

This mapping can be written in the form of the integral equatlon for the

Wicksell’s corpuscle problem, which has a well known formal solution

(Wicksell, 1925). This gives the pdf for (b,z) in terms of that for (b z).
We then transform back for the pdf for (a,b) in terms of that for (a b ).

The key relationships are:

1 ® aobo
fR(ao,bo) = }‘I J T f's(a,b) db s
B b=bo a V(b —bo)

where, in the integrand, a = VYb2+(a§—b§)) . This gives

. booo 1
g(b) = — o (b) db ,

where

gy (b)) = fR(bo.z)/<b§+z2) o gg(b) = £.(b,2)/(b%2")

This is Jjust the Wicksell integral equation, which has formal solution

(b) = - 2—“3 b | 1 d L‘(b") db
gs T V(bz 2, db b o’
b =b V(BgP") o 0
0

where

b =0
6}
This restores to
e 1 3
fs(a,b)/(ab) = = T TZ ab f (a b )/(a b )
\/(bo—b )

b =b
¢}

on 0 =b=ac<wo, where, in the integrand, a = V{b§+(a2—b2)}

(12)

(13)

(14)

(15)

(16)

(17)
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