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ABSTRACT

This study is based on observations of the growth of arteries and capillary networks in the
chorioallantoic membrane (CAM) of incubated chicken eggs. The structure of the capillary layer can
be described as a planar, area-filling hexagonal grid, whereas the arteries are seen in a plane
underneath the capillary plexus, resembling a bifurcating vessel tree. Further biological observations
strongly suggest that the larger vessels do not form sprouts but that they exclusively originate from
capillary proliferation and enlargement. A model for this mechanism of blood vessel formation has
been developed and compared with anatomical and physiological data.

In a computer simulation, growth of the network is driven by a stochastic process starting in a
point source. The probabilities for the formation of new capillary elements are derived from the flow
theorem of Hagen-Poiseuille and the diameter exponent. The hexagonal grid is visualized as being
supported by a flat limited area, a cylinder, and a sphere. The time course of growth and of blood
pressure is obtained. The resulting arterial tree is considered to have limited fractal properties, and
the dimension of its border is compared with the biological data.
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INTRODUCTION

The development of tree-like structures like the mammalian bronchial system or the vertebrate
vessel system has been of special interest to both anatomists, biophysicists and mathematicians
because of their optimality properties concerning surface-volume ratios (Weibel 1984), specific
volume density (Sernetz et al. 1985), and conductance (Spatz 1991). Moreover, they seem to follow
comparatively simple developmental rules (Weibel 1985). The concepts of fractal geometry, of self-
similarity and of iterative functions rendered the first synthetic models of mostly regular trees
(Mandelbrot 1977, Mandelbrot 1982, Bittner 1991), which already compared favorably with nature
(Peitgen and Saupe 1988). In the case of trees, self-similarity of the growing branch tips, together
with the diameter exponent A, allowed to synthesize nice regular patterns. The diameter exponent
essentially describes a relation of the branch thickness before (d) and after (d1, d2) a bifurcation by

dA=q,8 1q,A (1)

This relation describes the branch thickness completely except for a scaling factor, which may be
given by the thickness of the trunk. If a fluid is to flow through the tree, further limiting conditions
can be derived from hydrodynamics, i.e., in the ideal case of laminar flow of a Newtonjan fluid, from
Hagen-Poiseuille’s law.
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Nevertheless, the actual (cellular) mechanisms of blood vessel formation or angiogenesis, were
hardly appropriately portrayed with these models, which had gained their merits mostly from their
aesthetical and functional properties. We therefore based our simulation on observations of a
particular vascular growth process, the ’intussusceptive’ capillary growth (Burri and Tarek 1990,
Patan et al. 1993), and tried to build a model which would combine the developmental and the
physiological findings, and which should display an irregularity as observed in nature.

This growth process was first described in the developing mammalian lung after birth, but also
has been suggested for another respiratory organ, the CAM, which is used by the avian embryo
before hatching. This organ has great practical advantages, since it is easily accessible and may be
inspected even in the living state, and it is of considerable clinical importance as an established
growth assay of blood vessels or transplanted tumors. From the point of modelling, it is matchless,
because this membrane topologically resembles a sphere, but most of all, because both its capillary
layer and its conductive arterial system can be considered as contained in locally two-dimensional
tissue sheets.

One major observation was that the growth processes in the capillary layer drives the growth
of the underlying vessels (Kurz et al. 1993). A second observation, which will be fundamental to our
model was that the capillary network is built like a hexagonal grid (cf. Zeltner and Burri 1987).

The advantages (and the shortcomings as well) of a model lie in its simplification of reality. In
the case of the CAM, reality is comparatively simple so that we can hope that the odds are
outweighed by the evens. We thus assume capillary elements, or net elements, growing on a regular,
planar, hexagonal grid. Each element has a predecessor, whose diameter increases in proportion to
blood flow as required to support its successors. This is the deterministic part of the model, which
also includes the definition of neighborhood and the physical laws. The second part achieves the
stochastic nature: development takes place by adding new net elements to the existing system, which
is intended to parallel the intussuceptive growth (cf. Patan et al. 1993), and which is realized as a
stochastic process under constraints derived from the topological and physical context. The third
part finally provides the visualization of the simulation and its numerical evaluation, which are
compared with the morphology and physiology of the CAM.

THE PHYSICAL FRAMEWORK

The network of blood vessels is essentially determined by \Y
the set of the appearing bifurcation points and their Ap R
connection. These bifurcation points correspond to the net
elements in the simulation (Fig. 1). It is assumed, that the
three branches of the net elements all have the same length h
and that the flow is always laminar. Further dynamical Ap Ap2
vasodilatory processes are not considered.

Within a fixed time interval t the law of Hagen-
Poiseuille is given by

Fig. 1. A net element

V=27 Ap.RY, ()

where 7 denotes the dynamical viscosity, Ap the difference of pressure along h, and R the radius of
the branch. Assuming that the continuity principle holds (i.e. no fluid is lost through the capillary
wall), we get the equation

Ap-R'= Ap, R} + Ap, R} . (3)

To complete the physical assumptions, we assume, that the flow at all branch tips is a constant
volume V, within t, that the pressure difference also is a constant, Apg, and that the radius is a
constant, Re. Then the flow in a net element depends on the number of successors of this net
element. It makes sense to assume that the displaced V within t is a multiple of V, because if
Vi=k:Vg and V,=m-:V,, continuity yields V=V;+V, =(k+m) -V, k, meN. Let V=1 Ve,
1 €N, then
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=1.V, =7  Ap. R4 =Tt |, R4
V=1 Ve_th Ap R Byh 1-Ape-Rg . (4)

Now we introduce two functions p(l) and r(l) describing Ap and R in the considered net
element in dependence of Apg and R, by

Ap = p(l) - Apg, RY=1(l)-RY. (5)
Introducing this functions in Eq. (4) implies that

p(l)-r(1) =1 (6)

must be fulfilled for all | €N, A very simple class of functions are the power functions and assuming
that p and r are elements of this class we get, considering Eq. (6)

p() =14, r) =112 4 eR, @

These functions are used in the following and a meaningful interval of « shall be derived now.
It is well-known that the blood pressure decreases only little in the large vessels connected to the
heart and that the precapillary and capillary vessels induce the bulk of loss in pressure. We hence
assume that the pressure differences decrease with increasing number 1. This implies a negative a.
Further we consider the mean velocity ¥ of flow given by
l+a)
)

2

- 1 (
V:L—ﬁ~Ap-RZ— L. Ape-RZ.p(l)- ") = gy Ape- R2:1 (8)

At ~ 8nh
where A = 7R? means the area of the cross-section of the branch. This velocity decreases with
decreasing radius which implies (1+@)/2 > 0 and therefore o > — 1.

Now the deterministic part of the model is completely described and it may be noted that
there is a relation between « and the diameter exponent A. Transforming Eq. (1) we get

RA=R,A4+R,A 9)
A
and, using Eq. (5), this additivity is fulfilled if r(1)* = 1. This relation combines with Eq. (7) to
4
a=1-% and A= L (10)

Especially the result of Suwa and Takahashi (1971) of A=2.7, leads to a = — 0.48.

THE STOCHASTIC PART OF THE MODEL

The growth of the network is realized in the model by running through all border elements of
the network at the actual stage of the network in a random sequence. A border element will receive
a new successor with a given probability. This probability depends on the conditions present in the
already existing network. The entire border can be very rough reaching even interior regions of the
system. The conditions of a border element are restricted to local information, and the two main
questions of the stochastic part are: what is local information, and how can this information
influence the probability.

In view of the physiological aspects, local information at any single border element is the
pressure, and the amount of flow, its direction, and its velocity. We assume that the probability of
adding a new element increases with increasing pressure, with decreasing flow, and with decreasing
velocity. In addition, any directional change will decrease the probability of getting a successor.

These principal relations were implemented in a variety of ways. In this study, we used weights
directly proportional or reciprocally proportional to the parameters mentioned, except for the flow,
where proportionality to the square root was taken,
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Fig. 2. A simulation was run on a cylindrical surface. The dashed lines at the upper border
show the connections to the lower border. The parameters are a= — 0.33 and therefore A= 3.
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lower Hemisphere

Fig. 3. A simulation was run on a spherical surface, divided into two hemispheres. The borders
of the hemispheres are connected by a shift. The parameters are a= — 0.48 and therefore A=2.7.
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THE SIMULATION

The algorithm starts at a single source element located in the middle of the area. The sequence
of newly formed net elements is successively stored in a matrix representing the complete grid area.
This matrix was afterwards used for extraction of numerical information and for visualization. In
Figs. 2. and 3., the fully developed systems are shown on two surfaces of different topological
structure, and for different «. The trees, by virtue of their stochastic irregularity, appear much more
natural than most synthetical vessel patterns generated so far, The influence of the underlying
regular hexagonal grid, however, remains visible at a closer look. It should be noted that an
astonishing variety of local patterns may be contained in a single system, with very small branches
connected to large vessels near the source point, and with the appearance of loops. One should be
aware of that these patterns are self-organizing in that the differences in thickness, and consequently
in flow, pressure etc. influence the growth probabilities.

THE FRACTAL DIMENSION

The complexity or roughness of a tree or a network may be characterized with its fractal
dimension D. Both the CAM, and our simulated vessels grow in a plane, and hence their D is
expected to be in the interval [1,2). The parameters of the model, e.g. «, may influence D. But we
suppose that D is nearly independent from these parameters, because D can only be measured
correctly within a limited interval of magnification. It moreover depends on the underlying grid,
which in the hexagonal case implies approximative bounds to D, because a macroscopically straight
line is obtained in a limited number of ways. Because of the possible hexagonal ’generators’, D is
expected in the interval [1.26,1.69]). Table 1 shows that this is in accordance with the estimate of D
by the box counting method (BCM, cf. Mandelbrot 1982, Stoyan and Stoyan 1992) in both the
model and the CAM (Kurz et al. 1993).

Table 1. The fractal D of vessel patterns was determined with the BCM for two 2-D growth models
and the CAM (cf. Kurz et al. 1993) at various times of incubation. Measurement fields were
positioned at the locations indicated below. The areal fraction of the binary images ranged
from 25.4% to 53.4% for the simulations and from 16.3% to 35.7% for the CAM.

pole of upper upper equator/ lower equator/ pole of lower
Location hemisphere/ middle left field lower left corner |hemisphere/
centre field lower left corner
Simulation
of. Fig.2, a=-0.48 1.29 1.33 1.36 1.42
Simulation .
of. Fig.3, 0=-0.33 1.32 1.41 1.31 1.39
Incubation (d) 6 8 10 12
CAM 1.27 1.31 1.31 1.32

NUMERICAL EVALUATION

The number of net elements versus time is a sigmoidal function, whereas the plot of maximum
pressure difference vs. time appears as a (rugged) root function (cf. Fig. 4). The first observation
corresponds to the initially exponential and then, due to the limited surface of the egg shell,
plateauing growth curve of CAM vessels (cf. Ausprunk et al. 1974, Strick et al. 1991, Kurz et al.
1993). The second phenomenon shows that the crucial pressure drop occurs in the few last
generations of small ’arterioles’, whereas the main stems do not contribute much resistance to the
network. This shows that our networks solve the problem of supplying many vessel endpoints spread
over a huge area from a single source with good efficiency and even fits the available blood pressure
in the embryo (Van Mierop and Bertuch 1967).
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Fig. 4.  An internal time is \ oo
defined in the simulation and E
adapted to the developmental

time (d) in the CAM starting
in the 4th day of the embryo.
The number of net elements is
depicted  versus this time
(relative to the total number
which is 65535, dashed line)
and also the internal maximal
pressure is depicted in units of
Ape. The data were obtained I
from the run shown in Fig. 2.
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DISCUSSION

The model of blood vessel patterning presented here borrows from the biological paradigm, the
CAM, that the only site of angiogenesis is a capillary bed, which at any instant is connected to the
circulation and is perfused. This condition is quite different from ’blind’ sprouting (angiogenesis
proper), or from differentiation of unconnected vessels (vasculogenesis), and was termed
'intussusceptive’ vascular growth by Caduff et al. (1986). The cellular events were described in detail
by Burri and Tarek (1990) and Patan et al, (1993), and it is plausible that this mechanism of
extending a vascular bed is most efficient in the case of such vital organs as the mammalian lung or
the avian CAM, with their gas exchanging surfaces. Their depiction of capillary meshes inspired the
hexagonal grid we used, whereas we did not intend to model exactly the deformation of endotheljal
cells etc. described in this literature. Rather we were interested in how larger vessels can be derived
from such a meshwork, because from cytokinetic studies it is known that endothelial proliferation is
practically restricted to the capillary bed (Ausprunk et al. 1974, Kurz et al. 1993b). This implies
that the endothelia lining the larger conducting vessels were initially formed in the gas exchanging
capillaries, which later were transformed to arterioles. It does not exclude that endothelial cells may
have migrated upstream and contributed to the growing vessel wall there, a well-known behavior in
arteries (Wilms et al. 1991).

We did not address the question, how at the molecular level the control of endothelial
proliferation and differentiation could be modeled, but our physical approach implies that endothelia
are mechanosensitive or chemosensitive (cf. Ingber et al. 1987). In the CAM they obviously form
new meshes only, where according to T ~p-R (Laplace’s law), wall tension T is low, because
pressure p and radius R are low. Moreover, oxygen partial pressure (p02) is highest in the CAM,
whereas all inner structures of the embryo are at a low pOQ. This aspect has hardly been treated
appropriately in the physiological literature (Adair et al. 1990, Strick et al. 1991). It seems possible
however, that this local physical information is used for influencing cell shape via modification of
genetic expression, whereas the general developmental trigger may be one or more growth factors
(Ingber 1991, Wilting et al. 1991, 1993). The model may be fine-tuned to include more molecular
details, as soon as they will be elucidated.

At the moment, one impressive feature of the stochastically self-organizing physical model is
that from a very limited set of instructions, and on an absolutely regular matrix, a complex,
irregular, and in certain aspects optimal vascular system emerges. It has features in common with
nature like its growth characteristics, and its fractal dimension, but fails of course with respect to
completeness and generality: we modeled only a single source and assumed that the drainage
through veins would be accomplished analogously. The areas spared by the arterial branches may
indeed, by way of interdigitating branches, be used by the veins. On the other hand, the extension of
the model to three-dimensional growth, or the inclusion of loop formation (e.g. arterial and venous
anastomoses), of inversion of flow direction, of obliteration etc. is all but trivial, We believe,
however, that already a 2-D model can provide considerable insight into vascular growth processes,
which rather often are restricted to coplanar extension of a network.,
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