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ABSTRACT

Magnetic Resonance Imaging (MRI) offers considerable promise for the quantitative study
of the brain. We have investigated the application of MRI to measure the volume of six
formalin-fixed cerebral hemispheres and their internal compartments. In particular, we have
compared estimates of the volume of i) cortex (COR), ii) sub-cortex (SUBCOR, i.e. white
matter plus central grey matter) and iii) whole cerebral hemisphere (i.e. TOTAL) obtained
from MR images with those obtained from physical sections of the same specimens. The
method used for volume estimation was the Cavalieri method of modern design-based
stereology, which is mathematically unbiased. Volume estimates were obtained from the
physical sections by one observer and from the MR images by another observer. Application
of paired t-tests revealed no significant differences between the mean volume of COR,
SUBCOR and TOTAL obtained from the physical sections and MR images (p > 0.05). A
tendency was, however, observed for estimates of SUBCOR and TOTAL obtained from the
MR images to be lower than those obtained from the physical sections. In two specimens the
under-estimation is significant in that the difference in the volumes of SUBCOR estimated
from the physical sections and MR images is much greater than the predicted standard error
on the respective volume estimates. We recommend that further investigations be performed
to evaluate and compare the volume of the cerebral hemispheres and their internal
compartments estimated from both physical sections and MR images of formalin-fixed
specimens.
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INTRODUCTION

This study was conceived as a comparison of the volume of (i) cortical grey matter (neocortex
plus archicortex), (ii) white matter and (iii) central grey matter nuclei (e.g. thalamus,
putamen, etc.) estimated from MR images of formalin fixed cerebral hemisphere specimens
with volumes estimated from physical sections of the same specimens. However, it quickly
became apparent, that while providing a reasonable depiction of the boundary between cortex
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and white matter in formalin-fixed specimens, proprietary 3-D protocols available on a 1.5
Tesla whole body MR imaging system do not provide a sufficiently clear depiction of the
central grey nuclei to make estimation of their total volume from these images a viable
prospect. We have therefore compared estimates of the volume of compartment (i) above,
which we call cortex (COR), the union of compartments (ii) and (iii) above, which we call
sub-cortex (SUBCOR), and their combination, which we call TOTAL, estimated from MR
images with corresponding volumes estimated from physical sections for six formalin-fixed
specimens.

A variety of approaches have been used for measuring brain structures on MR images
obtained in-vivo. Commonly, computer-based planimetric techniques have been employed,
to measure, for example, hippocampal volume in clinical investigation of patients with
temporal lobe epilespy (e.g. Cook et al, 1992), schizophrenia (e.g. Shenton et al, 1992) and
Alzheimer’s disease (e.g. Killiany et al, 1993). Planimetric techniques are too tedious to
employ for outlining boundaries of the gyri and sulci on MR images. However, the Cavalieri
method of modern design-based stereology (CruzOrive, 1985; Gundersen and Jensen, 1987
Rosen and Parry, 1990; Mayhew and Olsen, 1991; Roberts et al, 1993; Roberts et al, 1994;
Cruz-Orive, 1997; Cruz-Orive, 1999; Gundersen et al, 1999) has been used in combination
with point counting to estimate the volume of the cerebellum (Escalona et al, 1990), the
frontal lobes (Sheline et al, 1996) and whole cerebral hemisphere (Regeur and Pakkenberg,
1989; Mackay et al, 1998).

In order that it can be described as clinical useful, an MR based volume estimation
procedure should be both precise and based on unbiased principles, and this has been
demonstrated for organs and compartments of the living human body in several studies
employing the Cavalieri method in this laboratory (Roberts et al, 1993; Roberts et al, 1994;
Light et al, 1995; Gong et al, 1998). The present study builds on the work of Mayhew and
Olsen (1991) who, using MRI and the Cavalieri method, estimated the volume of a single
formalin-fixed cerebral hemisphere to be 3.3% less than the volume obtained by fluid
displacement. We have studied six forman-fixed cerebral hemisphere specimens. Our
objective was to investigate whether there were any systematic differences between volume
estimates obtained from MR images and physical sections of these specimens.

ESTIMATION OF VOLUME BY THE CAVALIERI METHOD

By using the Cavalieri method an unbiased estimate of the volume of a structure of arbitrary
shape and size may be obtained efficiently and with know precision. The method requires
that, beginning from a uniform random starting position within the sectioning interval, the
structure is sectioned from end to end with a series of parallel planes a constant distance
apart, whereupon an unbiased estimate of volume is obtained by multiplying the total area of
the profiles through the structure on all the sections by the sectioning interval, i.e.

est,V=T. (A, +A,+...... +4,), cm? (1)

where 4;, A,, .... A, denote the section areas in cm® and T is the sectioning interval in cm
for the n consecutive sections. Several studies have shown that interactive point counting
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techniques represent a more reliable and efficient approach than planimetric drawing
techniques for obtaining the required section areas (Mathieu et al, 1981; Gundersen et al,
1981). The point counting method consists of overlying each section with a regular grid of
test points, which is randomly positioned to avoid bias (see Figure 1). After each
superimposition, the number of test points hitting the structure of interest on the sections is
counted, and the unbiased estimator becomes

est,V=T.alp . (P,+P,+...... +P,), cm’ (2)

where P, P,, .... P, denote the point counts and (a/p) represents the area associated with
each test point, corrected for any change of scale of the image as it is displayed on the
computer screen. The area of each section, 4; is now estimated by (a/p) x P;. The subscript
2 in est,V indicates that the volume is estimated by a two stage process, namely sectioning
and point counting.

The precision of a volume estimate obtained using the Cavalieri sections method may
be measured by its Coefficient of Error (CE) or ‘relative standard error’. However, prediction
of the CE for systematic sections is not straightforward. Since consecutive section areas are
not independent quantities, conventional statistical formulae can not be applied to determine
the variance of their sum. A reasonable (but not mathematically unbiased) error prediction
formula for the Cavalieri sections method was developed by Gundersen and Jensen (1987)
based on the theoretical work of Matheron (1965, 1971). A plot of the area of the structure
of interest on consecutive systematic sections is termed the measurement function. The
variance of an estimate obtained by systematic sampling corresponds to the difference
between the integral of the covariogram of the true function and the discrete approximation
of this integral derived from the section area measurements (Yates, 1948; Moran, 1950, and
see pages 318 to 319 in Cruz-Orive, 1989). Since the true function is not known it has to be
modelled. Critically, Matheron (1965; 1971) showed that the relevant difference could be
evaluated from the section area measurements by using so-called Euler-MacLaurin formula
to model the behaviour of the covariogram near the origin. Gundersen and Jensen (1987) used
this approach to develop a method for predicting the precision of volume estimates obtained
using the Cavalieri method and demonstrated that systematic sampling is more efficient than
random sampling by a factor that is generally equal to the square root of the number of
sections analyzed. Originally it was supposed that the contribution of point counting to a
Cavalieri estimate of volume could be ignored relative to that due to sectioning (Gundersen
and Jensen, 1987; Pakkenberg et al, 1989; Pache et al, 1993).

Souchet (1995), Kieu (1997), Kieu et al (1999), and Gundersen et al (1999) have
developed this formula for 3D smooth objects. The theory. which is based on Matheron’s
theory of "regionalized variables" (1965, 1971), reveals that the variance depends on the
smoothness properties of the measurement function:

[ *3(C P~ (0.0724*(b_.a)* A"y P)) = 4T PP, + Y PF.;1+ (007247 (b .a)* .n*TP) (5
' (XPY '

CE =
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This formula can be rewritten as (see, Cruz-Orive, 1999):

- A n n-2 n—1 *
CE'(V) = (o) "B* L P+ X P * Py 4" LR "Py) P!

xP
I=

+1- o) *0.0724*B 2+ (0, T’ @

which has been used in this study.

Calculation of the CE using Egs. (3) and (4) requires knowledge of the value of a
dimensionless shape coefficient BV A, which is equivalent to the mean boundary length of the
profiles divided by the square root of their mean area (Matern (1985)), and is a measure of the
average shape of the profiles through the structure of interest on the sections.

MATERIAL AND METHODS

Six cerebral hemisphere specimens bequeathed by subjects with no history of dementia,
alcoholism or other neurodegenerative disorder (3 males, 3 females; mean age = 70 years)
were fixed in formalin and set in separate blocks of agarose gel. The specimens were imaged
with a 1.5 Tesla SIGNA (General Electric, Milwaukee, U.S.A.) whole body MR imaging
system using a proprietary quadrature head coil. One hundred and twenty four coronal T1-
weighted images were obtained using a 3D Spoiled Gradient Echo (SPGR) pulse sequence (TR
= 34 ms, TE = 9 ms, flip angle = 450, NEX = 2, acquisition time = 27 mins and 52 secs).
The FOV of the images is 16 cm. Each image refers to a 1.6 mm thick slice of tissue and
consecutive slices are contiguous. Images were transferred to a SPARC 10 workstation (SUN
Microsystems, CA, USA) and input to ANALYZE (MAYO Foundation, Minnesota, USA)
software. The 256 x 256 x 124 acquired voxels of side 0.625 mm x 0.625 mm x 1.6 mm were
linearly interpolated to 256 x 256 x 317 cubic voxels of side 0.625 mm. Contrast on
conventional MR images results from differences in T1 and T2 relaxation times and the
abundance (i.e. proton density) of mobile hydrogen nuclei in tissues. In-vitro, white matter has
a longer T1 than grey matter and so appears the darker of the two tissues on the T1-weighted
images.

For each specimen the volumes of the compartments COR and SUBCOR were
estimated by point counting on systematic random series of MR images. The combined volume
of COR and SUBCOR is equal to the volume of the whole cerebral hemisphere, which in our
study is the volume of the whole specimen (i.e. TOTAL). The compartment SUBCOR, and
therefore also TOTAL, excludes the volume of the cerebral ventricles. Beginning with a
random start, point counting was performed at section intervals of 4.375 mm (i.e. on every
seventh image in the reformatted datasets), using a square grid of size 15 pixels, which is
equivalent to 9.375 mm. Values of the dimensionless shape coefficient (BV'A) estimated for
COR, SUBCOR and TOTAL from the MR images of specimen K023 were 19.3, 11.5 and 7.7,
respectively. The volumes COR and SUBCOR were estimated a further four times from the
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volume of specimen K023. In this example the sectioning interval is a factor of 2.6 greater
than was employed in the study to be reported below. The six systematic random coronal
sections in Figure 1 are separated by 45 tissue slices, each 0.625 mm thick, which
corresponds to a distance, T, of 2.8125 cm. The grey-scale images are overlain with a test
system with a separation between test points of 15 pixels, which corresponds to a distance of
0.9375 cm. The area associated with each grid point, a/p, is thus 0.8789 cm?. The number
of points recorded as lying in brain tissue on consecutive sections is 17, 35, 49, 44, 29 and
12, which gives a total of 186. An unbiased estimate of the TOTAL volume of the specimen
is therefore 186 - 0.8789 - 2.8125 = 459.8 cm?.

Fig. 1. lllustration of the application of the Cavalieri method to estimate the volume of
cerebral hemisphere specimen K023. An unbiased estimate of 459.8 cm?’ is obtained from the
total of 186 point counts on six systematic random sections.

After MR imaging the six formalin-fixed cerebral hemispheres were returned to the
laboratory in Denmark and physically sectioned using a high precision cutting tool. Horizontal
lines drawn in marker pen on the block of gel ensured that physical sectioning was carried
out in approximately the same direction as the MR imaging, pilot studies in this laboratory
having shown that cerebral volume estimates are more efficiently obtained by sectioning in
the coronal than the axial or sagittal orientation. Each of the contiguous physical slices is 4.54
mm thick. The cut sections were overlain with a transparent film containing a test system for
point counting (grid spacing = 1.125 cm? for COR and 4.5 cm? for SUBCOR). Point
counting was performed by a different observer than had analyzed the MR images. However,
one of the specimens (K023) was returned to Liverpool and estimates of the volume of COR,
SUBCOR and TOTAL were obtained from the physical sections by the first observer (grid
spacing = 10.1 mm).

Paired t-tests were performed to test for significant differences between volume
estimates obtained for the six specimens by different observers on the MR images and
physical sections.

RESULTS

The volumes obtained for COR, SUBCOR and TOTAL from the MR images (CM1) and
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physical sections (LS) are presented in Table 1.

Application of paired t-tests revealed no significant differences between the volumes
of COR, SUBCOR and TOTAL obtained from the physical sections and MR images (p >
0.05). However, whereas the mean of the volume estimates of COR obtained from the MR
images is within 1% of the value obtained from the physical sections, for SUBCOR the mean
volume obtained from the MR images is 12% lower than that obtained from the physical
sections, so that the estimated volume of TOTAL is also lower on the MR images than
physical sections (i.e. average of 6%) (see Figure 2). It is possible that the tendency for
under-estimation has arisen from two outliers (i.e. specimens K096 and K245) in which the
difference between the volume of SUBCOR estimated from the MR images and physical
sections is significant.

For each specimen estimates of TOTAL volume were obtained from the MR images
on a further four occasions (i.e. CM2 to CM5 in Table 1). In the first trial the section
interval was 4.375 mm and in the other four trials the section interval was 9.375 mm. Not
unexpected, the estimates are highly consistent (i.e. empirical CE of 1.7%). The five
estimates of COR and SUBCOR obtained from the MR images of specimen K023 using a
section interval of 9.375 mm are also highly consistent (i.e. CE’s of 4.0% and 2.2%,
respectively).

COR SUBCOR TOTAL
500 500 500 } ;;
400 400 400 \ ]t
300 300 300
=1 N
200 P 200 I 'T;c% 200
100 100 100
0 0 0

Fig. 2. The volume estimates obtained from the physical sections are denoted by filled circles,
and the mean volume of the compartment is shown to the left of the six individual estimates.
The volume estimates obtained from the MR images are denoted by open circles, and the mean
volume of the compartment is shown to the right of the six individual estimates.
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Table 1. Cavalieri estimates of the volume of COR, SUBCOR and TOTAL obtained from
physical sections (LS and CM) and MR images (CM1 to CM5) of six formalin-fixed cerebral
hemisphere specimens. The percentage CE’s predicted using Eqs. (3) and (4) are given in
parenthesis. The mean values for each compartment are also presented together with the
percentage Coefficient of Variation; i.e. standard deviation divided by the mean.

Physical Magnetic Resonance Imaging
Sections
LS CM CM1 CM2 CcM3 CMm4 CM5
K023 | COR 223.5 2344 241.5 230.8 222.6 239.1 244.0
SUBCOR 212.3 209.6 206.5 202.0 202.8 193.7 196.2
(7.4) (1.9) (2.0) @3.1) (3.0) (3.2) (3.2)
TOTAL 435.8 444.0 448.0 432.8 425.4 432.8 440.2
3.9 (0.8) 0.9) (1.4) (1.4) (1.4) (1.4)
K032 [ COR 251.0 236.9
(2.8) (2.4)
SUBCOR 208.9 209.6
(7.8) (2.0)
TOTAL 459.9 446.5 4441 445.8 448.2 447.4
(3.9) (0.9) (1.4) (1.4) (1.4) (1.4)
K096 | COR 192.0 193.8
(3.3) (2.7)
SUBCOR 192.9 138.0
(7.5) (2.7)
TOTAL 384.9 331.8 349.4 341.1 313.9 337.8
4.1) (1.1) (1.6) (1.7) (1.7) (1.7)
K245 | COR 239.0 226.5
2.7) (2.5)
SUBCOR 273.8 227.6
6.3) (1.9)
TOTAL 512.8 454.1 445.8 463.9 455.7 452.4
(3.5) (1.0) (1.4) (1.3) (1.4) (1.3)
K575 | COR 258.4 271.8
(3.0) (2.2)
SUBCOR 259.2 228.4
(6.9) (1.9)
TOTAL 517.6 500.2 497.7 502.6 496.9 499.3
(3.2) (0.9) (1.3) (1.3) (1.3) (1.3)
K648 | COR 247.3 246.1
(3.4 (2.3)
SUBCOR 204.3 199.9
(7.5) (2.1)
TOTAL 451.6 446.0 461.4 452.4 436.7 459.8
(3.4) 0.9) (1.3) (1.3) (L.4) (1.3)
mean | COR 235.2 236.1
(10.2) (10.8)
SUBCOR 225.1 201.7
(14.7) (16.5)
TOTAL 460.4 437.8 438.5 438.5 430.7 439.5
(10.8) (12.8) (11.2) (12.3) (14.3) (12.3)
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DISCUSSION

Our observation that paired t-tests found no significant difference between the mean volumes
of COR, SUBCOR and TOTAL estimated from the MR images and physical sections
provides support for the application of MR imaging in quantitative studies of compartment
volumes in studies of formalin-fixed post-mortem specimens. There was, however, a tendency
for SUBCOR to be under-estimated on the MR images compared to the physical sections that
merits further investigation. Regular quality control checks and previous validation studies
in this laboratory (Light et al, 1995) make it unlikely that this has arisen from miss-
calibration of the MR system. The finite thickness of the slice of tissue imaged can represent
a limitation in studies using MR imaging. If the signals arising from different tissue
compartments can not be separated within each voxel, then an artefact known as partial
voluming is produced. This uncertainty in the exact contents of any voxel is an inherent
property of the discretised image and would even exist if the contrast between tissues were
infinite. Partial voluming of high signal intensity grey matter with lower signal intensity white
matter may have tended to move the boundary between COR and SUBCOR inwards and be
responsible for the tendency for under-estimation of SUBCOR on the MR images. An
alternative explanation could be that MRI depicts a different physico-chemical boundary
between COR and SUBCOR than the one apparent on the physical sections. However, neither
of these suggestions can explain why the mean TOTAL volume of the specimens estimated
from the MR images tended to be lower than that obtained from the physical sections. Partial
voluming artefacts are minimised in this study via the use of high resolution (i.e. 3D) imaging
protocols for which the slice thickness is 1.6 mm. We recommend that further studies are
performed to establish the accuracy with which the volume of the cerebral hemispheres and
their internal compartments can in practice be obtained from both physical sections and MR
images of formalin-fixed specimens.

The volumes obtained for COR, SUBCOR and TOTAL in the six specimens
investigated in the present study are not the volumes that would have been present in-vivo.
The effect of formalin-fixation on brain tissue volume has been discussed by Mouritzen Dam
(1979). From a study of formalin fixed specimens Pakkenberg and Gundersen (1997) provide
a formula by which the number of neurons in the neocortex can be predicted from knowledge
of neocortical volume. This formula could be used in combination with MRI to provide
estimates of the number of neurons in the neocortex of in-vitro specimens. No shrinkage was
found between the overall volume of the fresh brains and the volume of the 94 fixated brains
at the time they were processed (unpublished data). A possible differential shrinkage, not
affecting the total volume, can, however, never be excluded. Other problems include low
contrast of the fixated tissue. The lower the contrast (cortex/white matter) the lower the
precision of the estimate.

To our knowledge, the present study is the first to investigate the volumes of COR and
SUBCOR on MR images of formalin-fixed cerebral hemisphere specimens. From the data
corresponding to LS and CM1 in Table 1, we obtain average values over all six specimens
of 1.05 (standard deviation, SD, = 12%) and 1.19 (SD = 11%) for the ratio of COR to
SUBCOR on physical sections and MR images, respectively. Sisodiya et al (1996) have
measured the volume of COR and SUBCOR on MR images obtained in-vivo for 33 healthy
subjects of median age 29. The ratio of COR to SUBCOR was on average lower in 11
females (1.02, SD = 29%) than in 22 males (1.06, SD = 26%), and lower in the right than
the left cerebral hemisphere in both sexes.

Computer based image analysis techniques are being developed for the measurement
of tissue compartment volumes from MR images obtained in-vivo. There are two main
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approaches. The first uses a novel data acquisition strategy to attempt to determine the
relative amounts of grey matter, white matter and CSF on a pixel by pixel basis in multi-slice
(i.e. 2D) series of MR images (e.g. Rusinek and Chandra, 1993), whereas the latter use
statistical techniques to determine 3D grey and white matter probablity maps from high
resolution (i.e. 3D) MR data sets (e.g. Ashburner and Friston, 1997). These methods could
be developed for application in in-vitro studies.

Morphometric studies of the living brain using MRI may encounter effects not
observed in this study of formalin-fixed specimens. In-vivo the T1 of white matter is shorter
than that of grey matter and the relative signal intensities of the compartments on T1-weighted
images is the reversal of that found in fixed specimens. In addition, Wiener et al (1996) have
reported 5% changes in MR image signal intensity with a period of 4 seconds, and random,
respiratory and cardiac synchronised brain motion, and CSF pulsations, although small, occur
throughout any MR acquisition obtained for a living subject (Feinberg, 1987; Enzmann and
Pelc, 1992; Poncelot, 1993). These inherent movements represent limits to the accuracy with
which the volume of brain tissue compartments can in practice be estimated in-vivo.
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