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ABSTRACT

The spatial arrangement of the epithelial tissue component was studied in prostatic
cancer and in normal prostatic tissue by applying second-order stereological methods
to histological sections from 20 prostatectomy specimens. Interactive segmentation of
the epithelial tissue component in normal and neoplastic tissue was performed with
an image analyzer. The epithelial component was considered as a stationary isotropic
ergodic random closed set with positive volume fraction Vv (volume process). The co-
variance C(r) of a volume process is the probability that two points in the reference
space, separated by a line of length r, hit the process simultaneously. An unbiased
estimate é(r) of the covariance of the epithelial volume component was obtained au-
tomatically from the stored images. From C’(r) and the estimated volume density Vi,
consistent estimates of the correlation function k(r), of the pair correlation function
g(r), of the radial distribution function RDF(r) and of the reduced second moment
function K(r) of epithelial volume were determined. Estimation of C(r) and RDF(r)
alone did not permit a distinction between different types of spatial arrangement of
epithelium in benign and malignant tissue. Estimation of k(r), g(r) and K(r) showed
clustering of epithelial volume at short distances and repulsion at long distances. The
best discrimination between benign and malignant tissue was obtained by estimation
of g(r). The pair correlation function indicated a partial loss of epithelial interaction
in the carcinomatous tissue, which was more pronounced in cribriform than in acinar
adenocarcinomas. Second-order stereology reproducibly detects architectural changes
in malignant lesions of glandular organs, with g(r) serving as the most useful tool.
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INTRODUCTION

Most stereological studies have been concerned with the estimation of characteristics
(in particular, parameters) of three-dimensional structures from measurements on pla-
nar sections. Examples are the well-known ”densities” (mean volume, surface area,
length, and number per unit volume) of classical stereology, and the mean volume of
particles. Often, the parameters represent the first moments of size distributions and
are therefore denoted as first-order quantities (Cruz-Orive, 1989). However, structures



204 MATTFELDT T: PROSTATE CANCER

are geometrically not fully characterized by a collection of first-order quantities. For
example, two random sets may have the same mean volume fraction Vy, but possess
different arrangements in space, due to different second-order properties. The aim of the
present study consisted in the exploration of the spatial arrangement of the epithelial
volume component of normal prostatic tissue and adenocarcinomas of the prostate by
second-order stereology (Cruz-Orive, 1989; Jensen et al., 1990; Mattfeldt et al., 1993).

MATHEMATICAL BACKGROUND

We consider stationary and isotropic ergodic random closed sets = with positive volume
fraction in an unbounded three-dimensional reference space, which will be denoted as
volume processes. Pairs of points z, (z + r), separated by the line r with known length
r, are thrown into the reference space with uniform random location. The covariance
C(r) of Z is the probability P that two points, which are a distance r apart and both
hit the reference space, lie simultaneously in Z:

C(r) = Pl{z € E) A{(z +1) € EY) (1)

The covariance of Z may be unbiasedly estimated stereologically from sections (Fig. 1;
see Stoyan et al., 1987). One throws pairs of points with growing distance r onto the
section. For each distance r one counts the number of pairs Nij; whose points lie both
in =, and the total number of pairs N whose points lie both in the reference space, not
necessarily in =:

C(r) = Nu/N.. (2)

With an unbiased estimate of the mean volume fraction Vy it is now possible to esti-

mate three other interesting functions of stochastic geometry consistently, namely the

correlation function k(r), the pair correlation function g(r), and the radial distribution

function RDF(r) (Koénig & Stoyan, 1986; Stoyan et al., 1987; Cruz-Orive, 1989; Ohser,
1991):

k(r) ={C() = (W)} {Ww — (W)*} (3)

3(r) = GO/ ') @

RDF(r) = 4nr2C(r) )V (5)

The function l:(7) can be considered as an estimator of the coefficients of autocorrelation
as a function of distance r. The pair correlation function g¢(r) represents the mean
volume content of = in a spherical shell of radii 7 and r + dr, centred at a typical
point of E, divided by the mean volume content of = in a spherical shell of the same
size but centred at an arbitrary point of the reference space (Cruz-Orive, 1989). The
function RDF(r) is linked to the reduced second moment function K (r) by the relation
RDF(r) = VV% (Stoyan et al., 1987). If we evaluate C(r) for n growing radii r;
with constant increment Ar, we obtain the following estimator of K (7), in a discretized
version, by substituting into eq. (5) (Mattfeldt et al., 1993):

ri[Ar
R(r) = (/W) Y- 2C0)AN i=1,n (©)

i=1

For volume processes, I{(r) denotes the ratio of the mean measure of = in a volume
of a sphere of radius r, centred at a typical point of =, to the volume density of =
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Fig. 1. A visual field from a prostatic adenocarcinoma with N.. =12 dipoles of length
7 = 100 pm. The number of dipoles whose endpoints both hit epithelium is Ny; = 8,

hence €(100 pm) = 8/12 = 2/3. To obtain more values of C(r), the evaluation is
repeated for dipoles of other lengths 7.

(Cruz-Orive, 1989). Eq. (6) is a new estimator of K(r) for volume processes with edge
effects implicitly corrected. Finally, we consider a hypothetical, ”completely random”
volume process of intensity Vi/, where every test point would be marked uniformly at
random and independently as ”1” with probability Vi, and as ”0” with probability
(1 = W). For such a process, we would have the reference functions Crep(r) = Vi,
hence RDF,.;(r) = dnr?Vy, kreg(r) = 0, gres(r) = 1, and Krep(r) = (47/3)r® for
all 7 > 0 (Mattfeldt et al., 1993). When estimated functions from real samples are
available, they can be compared to these reference functions in order to test whether
there is interaction — clustering or repulsion — within the empirical structure for the
explored distance range. Note that the reference functions for C(r) and RDF(r) depend
on Vy, whereas for k(r), g(r) and K(r) they do not depend on V.

MATERIALS AND METHODS

Twenty radical prostatectomy specimens from patients with invasive prostatic adenocar-
cinoma were investigated. Ten visual fields per case were sampled systematically from
tumour tissue and from tumour-free domains in each specimen using paraffin sections
stained with haematoxylin and eosin. The selected fields were transmitted to an image
analyzer with a black-and-white CCD camera. The result was a gray level image with
a resolution of 512 x 512 pixels. By interactive segmentation a binary image was pro-
duced, where pixels with the epithelial component were coded as 1, and the pixels with
non-epithelial components were coded as 0. An array of 32 x 32 pixels per image was
used for the further evaluations (Fig. 2a,b). First, Vi, was estimated according to the
principle of Delesse. For the estimation of C(r) from an image, the distances r between
all pairs of different points of the array were calculated. The distances were classified
into 32 groups with an interval length of Ar = 13.6 pm from r = 0 to r = 435.2 pm.
Then the quantities Ny; and N were determined for each class of distances, and the
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Case 7: Image 1 Case 16: Image 9

Tumour-free Carcinoma

Fig. 2. Visual fields from tumour-free prostatic tissue (left panel) and a prostatic
adenocarcinoma (right panel) were first digitized as images of 512 x 512 pixels. These
images were reduced to 32 x 32 pixels for the automatic estimation of C(r) and Vy.
Heavy dots: epithelium, light dots: non-epithelial components. Intact glandular ar-
chitecture (left) and dedifferentiation (right) are recognizable despite considerable loss
of information as compared to the original image in the microscope (no colour, binary
image instead of gray values, only 1/256 of all pixels).

mean function of C( ) was estimated for each case according to eq. (2) after averaging
C(7) between images within cases separately for each class. By substituting the mean
values of C(r) and Vi per case into eqs. (3-6), the other functions were estimated. For
group comparisons, means and 95%-confidence intervals were calculated within the 2
groups from the mean functions of the cases using the ¢-distribution.

RESULTS AND DISCUSSION

The mean volume fraction of the epithelial component was significantly higher in ade-
nocarcinomas (mean = 0.62, SD = 0.09) than in tumour-free prostatic tissue (mean =
0.41, SD = 0.08, P < 0.0001). “The functions C’(r) and R/D\F(r) (Fig. 3a, b) differed
considerably between tumour-free and cancerous tissue, but these functions depend
on spatial pattern and Vy. As carcinomatous tissue had a higher epithelial volume
fraction Vy than tumour-free tissue, their estimation did not permit a safe distinction
between different types of spatial arrangement. Analysis of the functions k(r ), §(r),
and I (r), which are not dependent on Vi, showed clustering of epithelial volume at
short distances, and repulsion of epithelial volume at long distances (Fig. 3c,d, Fig.
4a). Glandular epithelium consists of cell groups, which implies clustering at short dis-
tance ranges; it also develops glandular openings (lumina) and is surrounded by stromal
components, which implies repulsion at longer distances. The best distinction between
benign and malignant tissue was obtained by estimation of g(r), which showed a partial
loss of short-range and long- range interaction in the carcinomatous tissue (Fig. 4a).
The low interindividual scatter of k(r), §(r) and K(r) indicates a high biological signifi-
cance of spatial pattern. Fig. 4b displays the mean pair correlation functions for acinar
and cribriform prostatic adenocarcinomas. For acinar adenocarcinomas, §(r) showed
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Fig. 3a (left upper panel). Plot of the mean covariances C'(r) (indicated by crosses)
with 95%-confidence intervals for tumour-free prostatic tissue and prostatic adenocar-
cinomas. Upper horizontal line: reference curve for carcinomas Cr.; = 0.622, lower
horizontal line: reference curve for tumour-free tissue Cres = 0.412. Fig. 3b (right up-

per panel). Plot of the mean radial distribution functions R/D\F(r). Upper continuous

curve: reference curve for carcinomas RDF
reference curve for tumour-free tissue RDF' !

ref = (477?)0.62, lower continuous curve:
ef = (47r?)0.41. Fig. 3c (left lower panel).

Plot of the correlation functions ]:(I) for tumour-free tissue and prostatic adenocarci-
nomas. The horizontal line is the reference curve kr.; = 0 for both groups. Fig. 3d
(right lower panel). Plot of the reduced second moment functions K (r) for tumour-free
prostatic tissue and prostatic adenocarcinomas. The polynomial K,.; = (4m/3)r® is

the reference curve for both groups.
(confidence intervals hardly visible).

The variance between cases is exceedingly low

a steeper initial descent near r = (0 than for cribriform carcinomas, which agrees well
with the widely held view that the acinar carcinomas are better differentiated than the
cribriform tumour type. To examine the diagnostic accuracy in individual cases, the
specimens 1-10 were used as a learning set, from which the computer had to "learn”
to distinguish between tumour-free tissue and carcinomatous tissue using G(r). When
the learnt criteria were then applied to the test set, i.e. the cases 11-20, all samples
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Fig. 4a (left panel). Plot of the mean pair correlation functions §(r) (indicated by
crosses) with 95%-confidence intervals for tumour-free prostatic tissue and prostatic
adenocarcinomas. The horizontal line is the reference curve g,e; = 1 for both groups.
No overlap of confidence intervals at short and long distances r. Fig. 4b (right panel).
Plot of the mean pair correlation functions §(r) for acinar prostatic and cribriform
prostatic adenocarcinomas. Note steeper initial descent of §(r) for the acinar tumours.

were diagnosed correctly. The differences between normal and carcinomatous prostatic
tissue were very similar to those between mastopathy and invasive ductal breast cancer,
which were reported recently (Mattfeldt et al., 1993). Thus, second-order stereology
reproducibly detects architectural differences between benign and malignant glandular
tissue, with g(r) serving as the most useful tool.
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