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ABSTRACT

A new method for shape characterization of 3-D space curves is
presented. The proposed procedure based on the Fourier analysis
techniques can be regarded as a generalization and further
development of methods described in the literature. Its
advantages are its simplicity and its ability to describe the
shape of any closed space curves regardless of their nature.
The space curve is parametrised by its arc 1length and
characterized by a set of 3-D vector valued “shape functions”.
The shape function is unambiguously defined for any closed
Sspace curve, and contains the complete 3-D information on the
curve. The three components of +the shape function (called
partial shape functions) are periodic with the period 21, and
can be expanded 1in Fourier series. Starting with the
appropriately selected partial shape functions, shape
descriptors generated from Fourier coefficients are defined for
shape evaluation. They are invariant under translation,
rotation and dilation. In order to verify the validity of +the
computational model and to analyse the efficiency of the
proposed procedure, experimental study has been performed using
different test curves.
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INTRODUCTION

In recent years 3-D shape analysis using computers has become
an increasingly important research area due to 1its practical
applications in fields such ‘as object identification,
quantitative assessment of microstructural features (Exner,
1987; Flook, 1987; Chong-Huah Lo and Hon-Son Don, 1989). In
this paper, a new approach employing generalised
Fourier-descriptors is proposed for shape analysis of
3-dimensional curves. The method reported here relies on the
concept of the “generalised Fourier analysis” published earlier
(Réti and Czinege, 1989) and can be considered as a possible
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extension of the techniques proposed for the shape description
of closed plane curves. After summarizing the theoretical bases
of the suggested method, the computation of Fourier
descriptors, which are translational, scaling and rotational
invariant, is outlined. Finally, some results of preliminary
experiments performed to verify the validity of the proposed
method are presented.

SPACE CURVE REPRESENTATION USING VECTOR-VALUED SHAPE FUNCTIONS

Let A be a continuous, piecewise-smooth closed space curve that
is parametrised by its arc length parameter O=ssP, where P 1is
the total arc length (the perimeter) of +the closed curve.
Without loss of generality, we can assume that the perimeter is
normalised to 21, that is P = 2. In what follows, we suppose
that space curve A described by a vector-value function r,(s)
is located in a cartesian coordinate system so that its centre
of mass coincides with the origin O. )

Based on the general method published earlier, for the shape
characterisation of space curve A a set M, of so-called “shape
functions” is introduced (Réti and Czinege, 1989). A shape
function U,(s) e M, represented as

Uy(s) = [U, ,(s), U, ,(s), U, ;(s)]"

is a piecewise continuous, vector-valued, 3-component function
with scalar variable s. The set My, of shape functions is
defined and constructed in a way that satisfies the following
conditions:

(a) The set M, of shape functions belonging to the space
curve A is invariant under translation, dilation and rotation
of the curve A.

(b) The components UA'k(s) (k = 1,2,3) of the shape
function U, (s) are square integrable real functions defined in
the interval (-o,+0) and are periodic with period 20. The
components UA,k(s), called "partial shape functions”, can be
expanded in a Fourier series.

(c) If the shape functions U,(s) « M, then from this it
follows that any shape function of the form

U(e s+ s.)

belongs to the same set M,, where s, e [0, 2I1) and ¢ is equal to
+1 or -1. As can be seen, this relation is a valid equivalence
relation (reflexive, symmetiric and transitive) and may be used
to partition the set of space curves into equivalence classes.
(d) Let us suppose that the space curve A, is a reflected
and rotated version of Aa. In this case, for the kth components

UA’k’a and UA'k , of the corresponding shape functions UA,a(s)
and U, , ,(s), ithe relation
Ug,k,p(s) =E U, (e + s,)
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where S € [O, 2T ) and the value of integers E, and €, are +1

or -1 for k = 1,2,3 4is valid. Starting with the Fourier

coefficients a , b , a and b (m = o0, 1, 2w )
m, k m, k m,n m,n

obtained from the kth'and nth shape ' function components, the

following shape descriptors can be defined

k5 =
wi.mn) - am,ka'm,n + bm,kbm,k (1'1)

z{*;») = a (1.2)

m,kbm,n B bm,ka'm,n
It should be pointed out that they are not independent of each
other, that is they satisfy the following condition

Wik W) = wln)iZ 4 gk, 2

The properties of the resulting Fourier descriptors Wﬁfé") and
ZAf%“ (m = 1,2, ..) may be summarised as follows:

a/ The shape descriptors introduced are invariant to
translation and rotation of the space curve.

b/ A fundamentai property is the shift invariance. This
means that the value of shape descriptors depends only on My
and is independent of the particular choice of +the offset
parameter S,, which characterises the starting point of the
parametrisation.

¢/ The shape descriptors Wﬁfék) and the absolute value of
Wﬁfé“) and Z&fé" are independent of the selection of the
parameters E, and €, .

d/ If a component UA,k(s) of the shape function U,(s)
belonging to My is periodic with period S, = 2m/J, (J =
2,3,...), then

WeE)
for m # O(mod 7J).

e/ It follows from the known property of the Fourier
coefficients that the shape descriptors tend to zero with
increasing m.

& k, -
coo=z{km) 20

DEFiNITION OF PARTIAL SHAPE FUNCTIONS USED FOR SPACE CURVE
DESCRIPTION

In order to characterize the shape of an arbitrary space curve,
we introduce a three-component shape function U,(s) represented
as

U,(s) = [R,(s), G,(s), H,(s)]"

The basic property of the partial shape functions is that they
are uniquely determined by the shape of the Space curve, and
allow a description of the shape, but this description depends
upon the particular choice of the initial point on the curve
and the “direction of the curve parametrisation”.
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Taking into consideration the requirements mentioned above, the
three partial shape functions U, 1(s) =R,(s), U, »(s)=G,(s), and

3(s) =H, (s) which are referred "to as the “distance function”,
the "cumulative area function” and the “pseudo-torsion
function”, respectively can be generated as follows:

i. The distance function 1is based on the following
considerations: Let the point O be the centre of mass of the
space curve, and let P be an arbitrary point of the curve A
determined by the arc length parameter s. The partial shape
function R, (s) is defined by the distance OP. It is obvious
that R, (s) is periodic with period 2T.

ii. For constructing the cumulative area function”", as a
first step, consider the “vector area” of a closed space curve
represented by r,(s). It is known from the vector analysis,
that the vector area F, of a closed curve A is obtained as R, =
f,(2) where the vector-valued function f,(s) is defined by

1
£,(s) = —

ol (1) x r,(t)ldt (2)

O “—n

and s stands for the arc length along the space curve measured
from an arbitrary initial point on the curve A. It should be
noted here that the derivative -of r,(s) is supposed to be a
piecewise continuous function.

As a second step, 1let us define a unit vector e, which
characterises the position of the curve A in 3-D Euclidean
space. It is assumed that the unit vector e,, called the
"“reference vector” is determined unambiguously by the space
curve A.

Starting from the relationship expressed in Eq. (2), the
cumulative area function G,(s) suitable for spaee curve
characterisation can be defined as

g,(2m)
G,(s) = g,(s) - “onr & T Bus (3)
where
and
21
g,(2m)
R

It follows from the definition +that G,(s) {is periodic with
period 2T, and

21
J G,(s)ds =0
0
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The quantity g,(2m) is called the “virtual area” of the closed
Space curve. In the case of plane curves, g,(2M) 1is equal to
the truth area enclosed.

The reference vector e, can be chosen in several ways. In
practical computation, we have generated the reference vector
on the basis of vector area F,. Let F, 1 be the first non-zero

component of the vector area F i where 1= i=3. The arc length
parametrisation of a closed space curve A is said to be of
positive orientation or of negative orientation if R, o 18
positive or negative, respectively. In accordance with former
considerations the reference vector e, 1s defined as

e, = sgn(FA")FAIIFAI
where IF | is the absolute value of the vector F,

114. Starting with the preselected reference vector, the
pseudo-torsion function H, (s) used for shape
characterisation, is defined by the scalar product

H,(s) = e,r,(s)
Due to this definition, H,(s) is periodic with period 21, and
H,(s)=0, if and only if A is a plane curve.

The shape functions are affected by the choice of the curve
parametrisation. If the sense of parametrisation is reversed,
then the partial shape functions are transformed as follows:

R, .(s) =R,(21 - s) (4.1)
GA’P(S) = - G,(21 - s) : (4.2)
HA’P(S) = - H,(21m - s) (4.3)

where R, r(s), A, .(s) and H, (s) are the transformed partial
shape functions belonging fo the space curve of revised
parametrisation. This implies that the following three shape
descriptors will alter their signs:

1,2) _ _ 1,2
vita2) = - (1,2
1,3) _ _ 1,3
wit2) = - wit,e)
2,3) _ _ 2,3
z{%,2) = - z{2;2)

and the other remaining shape factors will not be affected.

EXPERIMENTAL STUDY

In order to illustrate some features of the method described,
preliminary experiments have been carried out using four test
curves denoted by BO, Bl1, B2 and B3 (Fig.1.). A computer
program written in Pascal language has been developed for the
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Fig. 1. Four test curves used for shape analysis

calculation and run on a microcomputer. For an arbitrary space
curve the program calculates the first eight (M = &) Fourier
coefficients and shape descriptors defined according to the
Eq.(1). Data input was made by specifying the coordinates of
the vertex points PJ (j=0,1,..N) of the polygon, which
approximated the closed space curve. By increasing the number N
of vertex points, the accuracy of the approximation can be
improved to the necessary extent. In the practical computation
of the shape descriptors we took into consideration N = 240
sample points. As an example, Figure 2 shows the partial shape
functions R, (s), G,(s) and H,(s) characterizing the space curve
Bl. Some computed Fourier descriptors related to four test
curves are given in Table 1. Comparing the test curves in Fig.
1 the following conclusions can be drawn:

Curve BO is unsymmetric, curve Bl possesses only one plane of
symmetry, while curve B2 is centrally symmetric with respect to
its point of mass centre. Curve B3 has three types of symmetry
elements, since it possesses a plane of symmetry and a centre
of symmetry, furthermore, i1t has a two-fold rotational
symmetry. Analysing the data in Table 1, we can see that some
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Fig. 2. Partial shape functions characterizing the space

curve Bl1.
Table 1. Computed shape descriptors for four space
curves (m = 1)
Shape Test curves
descriptors
BO B1 B2 B3

an

Wy 0,10662 0,07723 0 0
(2,2)

Ws™ 0,05533 0,00239 0 0
6.9

Wg™ 0,29819 0,06181 0,00139 0,00131
.2)

[ws-2) { -0,00300] 0 0 0
3

W52 | -0,17812] 0,06093 0 0
@3

Wy’ 0,01091 0 0 0

Z(|.2)
51 0,07675 -0,01357 0 0
(1,3)

Zy') 0,00819 0 0 0
(2,3

|25 0,12798 0,01214 0 0
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of the shape descriptors are equal to zero. This can be
explained by the fact that +there are close relationships
between the symmetry properties of the curves and their Fourier
descriptors (Réti and Czinege, 1993). We can further conclude
that the visually similar curves B2 and B3 are also judged to
be quantitatively similar (see Table 1.).

CONCLUSIONS

a. The partial shape functions introduced can be defined
at every point on the space curve, even on those points whose
curvatures vanish. Since R,(s), G,(s) and H,(s) are continuous
functions, this fact affects the computation of Fourier
descriptors advantageously.

b. Any space curve is completely determined, in both its
position and orientation, by its shape function. Knowing this,
the shape of the space curve can be unambiguously
reconstructed.

c. Fourier descriptors contained detailed information on
the symmetry properties of the space curves, and they can be
used to quantitatively characterise the shape similarity
between the space curves. ‘

d. The major advantage of the method proposed lies in the
convenience of writing a computer program for generating shape
functions and finding shape descriptors.

Further studies are in progress to evaluate the performance of
the method for a wider range of space curves, including many
from the real world.
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