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ABSTRACT

The problem of simulating a 3d stationary gaussian random function is considered. The
turning bands method is a stereological device designed to reduce a 3d simulation into
unidimensional ones. This paper mainly deals with the practical implementation of this
method.
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INTRODUCTION

A random function is said to be gaussian ("multigaussian” in the geostatistical jargon) if
any linear combination of its variables follows a gaussian distribution. Its spatial distri-
bution is totally characterized by its mean value m and its covariance function C.

This paper is devoted to the non-conditional simulation of stationary 3d gaussian random
functions over a discrete or continuous three-dimensional domain D. In what follows, we
shall assume m = 0 and C(0) = 1 (standard case).

An idea for a simulation algorithm is suggested by the Central Limit Theorem (Feller,
1971) which implies that under some mild assumptions the average of independent random
functions (non necessarily gaussian) tends to become gaussian as their number becomes
very large. To put this idea into practice, two questions must be considered:

i) How to generate random functions, not necessarily gaussian, with a given covariance
function? In this paper, the turning bands method is investigated. Devised by Matheron
in 1972, this method starts with the principle that it is easier to simulate along a line
where the points are sequenced, rather than directly in IR®. However, this method has
met with resistance from practioners using simulations, mainly because of problem due
to discretization and truncation. This paper sets out to show that these difficulties can
be surmounted.

ii) How many random functions must be generated? To answer this question is not very
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Figure 1. Some realizations of standard gaussian random functions with different covariance
functions. From top to bottom and left to right, spherical, exponential, Gaussian and cardinal
sine covariances.

easy because statistical deviations from the gaussian model can result either from a conver-
gence problem (if the number of random functions is not large enough) or from a support
problem (if the simulation domain is not large w.r.t. the covariance range). Both prob-
lems can be addressed by considering expansions related to the Central Limit Theorem,
in particular the Berry-Esséen Theorem (Feller, 1971).

These two problems will be considered in turn.

THE TURNING BANDS METHOD

The covariance C is a positive definite function. If C'is also continuous, Bochner’s theorem
states that it is the Fourier transform of a positive measure (the spectral measure), say y

C(h) = /;qs exp{i < u,h >} dx(u) (1)

Moreover, since C(0) = 1, x is a probability distribution. Putting u = (0,1) where
0 is the direction of u (0 spans half a sphere, say S¥), and [ is a location parameter
(=00 < I < 400), dx(u) can be written as the product of the distribution dw(f) of 6 by
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the conditional distribution do(1]6) of I given @

dx(u) = dw(0) do(1|0) (2)
Replacing x by its expression in formula (1) gives
+o00
Ch) = /52+ /_w exp{il < 0,k >} do(1|0) dw(0) (3)

L., Co(< 0,k >) deo(0) (4)

where Cy is the unidimensional covariance

Cotr) = [ explirt) do(ilo (5

The idea of the turning bands method is to reduce the simulation of a gaussian random
function with covariance C' to the simulations of independent stochastic processes with
covariances Cy. Let (6,,n € IV) be a sequence of directions of SF, and let (X,,n € N)
be a sequence of independent stochastic processes with covariances Cjy,. The random
function

1 n
Y (z) = T X< Oz>) ceR (6)
k=1

admits the covariance

1 n
c™(p) = = 3" Co(< Or, b >) (1)
k=1

As n becomes very large, the Central Limit Theorem implies that the spatial distribution
of Y™ tends to become gaussian with covariance lim, ., ;oo C™. This limit is exactly C'
in the case where ,1—12221 bp,, converges weakly towards w. The algorithm produced by
the turning bands method is the following one:

i) generate a set of directions 01,...,0,.

ii) generate independent standard stochastic process Xy, ..., X,, with covariance functions
Csy, ..., Cy,.

iii) compute ﬁ 2k=1 Xi(< O,z >) for any = € D.

The calculation of the various covariances Cp may not be always easy. However, in the
particular case where the covariance C is isotropic, then @ is the Lebesgue measure over
St and all of the Cy are equal to a same covariance function, say C1. Its explicit value
satisfies

Ci(r) = ;l—r(r Ca(r)) >0 (8)

where C3(|k[) = C(h) stands for the polar form of C.

Note also that the turning bands method tells nothing about the ways to generate the
various directions 0y or to simulate the stochastic processes Xj. This is the object of the
next two sections.
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SIMULATION OF THE STOCHASTIC PROCESSES
There exists many possible choices to simulate X}, which makes the turning bands method

very flexible. Consider, for instance, the case of an isotropic exponential covariance func-
tion

C(h) = exp{—|h|]} heR? (9)
The unidimensional covariance associated to the exponential covariance is
Ci(r) = (1=1Ir]) exp{=Ir]} reR (10)

Three different methods are presented hereunder.

2

Let L be a random variable with p.d.f. , | € IR (the spectral density of Cy).

l
1+
Direct calculations show that if @ is umfmm over (0,27), then the stochastic process

Xi(t) = V2cos(Lt+) teR (11)

admits C for its covariance function. This is exactly the formulation of the spectral
method by Shinozuka (1972) among others. The spectral method has the potent advan-
tage of being easily implementable (the spectral density can be simulated by acceptance-
rejection), but the X}’s are not ergodic.
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Figure 2. Simulation of an exponential covariance using the turning bands method. Three

models for the unidimensional simulation. From top to bottom, the spectral method, the dilution
method and the migration method.

To simulate the stochastic processes, one can also consider a dilution process, that is a
moving average of functions located at random points. More formally

= > 9(t-p) (12)

peEP

where P is a Poisson point process in IR of intensity 1, and g is the numerical function
defined by

g(t) = (1—t) exp{~t} I > ¢ (13)
(Matheron, 1972; Journel, 1978), but this is not fully satisfactory as g does not have a
bounded support.
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A third possibility that has been inspired by migration techniques (Matheron, 1968)
also exists:

i) generate a Poisson point process that partitions IR into independent exponential inter-
vals of mean length 2.

i) split each interval into two halves, and set the first half to +1, the second half to —1.

Other algorithms for various types of covariances are given in (Lantuéjoul, 1994). In most
cases, discretization and truncation problems can be avoided by using an appropriate
simulation algorithm.

GENERATION OF THE DIRECTIONS IN THE ISOTROPIC CASE

In the isotropic case, w is the Lebesgue measure over S3 and can be approximated by
a set of 15 regular directions at most (Journel and Huijbregts, 1978). To generate more
directions, a possible approach is to compute an equidistributed sequence of points. A
sequence of points is said to be equidistributed in Sy if for any B C S, the proportion
of points fallen within B from among the first n points tends to the ratio between the area
of B and the one of S as n becomes very large. For instance, a sequence of independent
and uniform points in S5 is equidistributed. But the crux is that there exist sequences
that converge faster than independent and uniform points. Freulon (1992) suggested the
following algorithm: he considers the binary and the ternary expansions of any integer
n=1,2,..

n o= ao+2a1+ - +2%a, = by+3b +---+ 3%, (14)
with a; = 0,1 and b; =0, 1,2, from which 2 numbers between 0 and 1 are generated
_ do aq ay ) _ bo bl bq
Un = g TE R = gttt (15)

The coordinates of the n** point of the sequence are

0, = (cos(27ru”) V1 =02, sin(2ruy) /1 —v?, vn) (16)

Figure 3 shows a comparison of 400 independent and uniform points with the 400 points
generated according the previous algorithm.

In the case where the 6)’s have been independently and uniformly generated, it is possible
to assess how the spatial distribution of

1 n
Y™(2) = \/—EZXL.(< O,z >) a2€R® (17)
" k=1

departs from a gaussian distribution, or equivalently, if zy, ..., 2, stand for any set of points,
and if Ay, ...A, denote any set of numbers, how does the distribution of Y Y () ()
departs from a gaussian distribution with mean 0 and variance 02 = E e p Aidi Cxj—
z;1)? Provided that the distribution of 201 AiXk(< Ok, xj >) admits an finite third order

absolute moment, say j3, a possible answer is given by the Berry-Esséen theorem (Feller,
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1971). This theorem gives an upper bound for the difference between the standardized
distribution of the average, and the standard gaussian distribution G

sup | P

u€R a

BRI 7 o3

< u} - G} | « — L (18)

where o is a numerical constant less than 1.32132. A more restrictive approach consists of
comparing the moments of Y(") with those of a standard gaussian random function (Lan-
tuéjoul, 1994). The two-dimensional case of a regular set of directions has been studied by
Mantoglou and Wilson (1982). General results related to the case of an equidistributed
sequence of points are not known so far.

Figure 3. Generation of 400 points on the unit sphere. On the left, the points are independent
and uniform. On the right, they are located according to an equidistributed sequence.
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