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ABSTRACT

The Voronoi mosaics corresponding to the planar Neyman-Scott process of
point pairs and regular quadruples (vertices of a square) are investigated.
The mean values of cell parameters are those of a Poisson-Voronoi tessella-
tion (PVT) of the same intensity of generating points. If the inter-daughter
distances are comparable with or smaller than the mean nearest neighbour
distance of the parent process, then higher moments of cell area and perime-
ter distributions differ considerably from the PVT values. If, moreover, the
orientation of clusters is fixed, then also a pronounced anisotropy of cell
boundaries is observed. The results are compared with those of standard
statistical quadrat testing methods and a good agreement is found.
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INTRODUCTION

The popularity of Voronoi tessellations corresponding to examined point
patterns is based on the ability of human eye to perceive easier the
departures from uniform randomnes, clustering, anisotropy, periodicity etc.
by inspecting the induced Voronoi cells than by observing the point pattern
itself. Moreover, it is rather tempting to consider the Voronoi tessellation
as a natural dual representation of the underlying point pattern and to
carry out a detailed statistical testing of its properties instead of
testing the original point pattern, e.g. in order to reject or accept the
hypothesis concerning the choice of a model for the investigated pattern.
The properties of the Voronoi tessellation induced by the Poisson point
process (PPP) are well known from the theoretical (Meijering, 1953; Gilbert,
1962) as well as from numerous computational studies (e.g. Hinde and Miles,
1980; Miles and Maillardet, 1982). Voronoi tessellations induced by more
general point processes are much less known.

The purpose of the present contribution is to compare the properties of
Voronoi tessellation induced by the planar Gauss-Poisson process - GPP -
(Stoyan et al., 1987, 142-5) and its slightly formal generalization with
those of the Poisson-Voronoi mosaic. GPP is a special case of the Neyman-
Scott cluster process combining the poissonian randomness of the parent
location with the regularity ot the daughter arrangement and its
characteristics depend on the cluster size and orientation. Simplified
versions of GPP have been examined, namely the representative cluster NO was
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either a pair of points (process of pairs) or a quadruple of points forming
vertices of a square (process of quadruples); the size of NO has been varied
and its orientation was either fixed or isotropic random.

The basic theoretical formulae for Poisson-Voronoi tessellation (PVT) are

E(A)=A"Y, E(S)=a/VA=2L /A, E(N)=6, E(4%)=1.280A 2, (1)

A
where A, S, N are the cell area, perimeter and number of cell edges, resp.,
and A is the intensity of the underlying
PPP (the first equality in (1) holds
obviously for an arbitrary tessellation).

The sample characteristics of distributions
estimated by Hinde and Miles (1980), namely

Table 1. Characteristics of PVT

A S N
¢ [0.529/A] 0.973/VA| 1.335

CV |0.529 0.2433 0.223

variance o, coefficient of variance CV, Bl 1.083 0. 133 0. 432
skewness B, and kurtosis B are summarized B 4,599 2.983 0. 206
. 1 2 2

in Tbl. 1.

SIMULATIONS

Four types of GPP have been simulated by implanting a pair or regular
quadruple of points into a point of the parent PPP of intensity APEAX:

A) point pairs of fixed orientation and of variable distance ZEAE[0-01»4] as
measured in the units of 1/V1A, which is twice the mean nearest neighbour
distance cp=0.5/¢kp of the parent points,

B) as A) with the isotropic orientation of pairs,
C) regular quadruples of fixed orientation and of the variable edge length
ZECE[0.01,4] as measured in the units 1/Vﬁc,

D) as C with the isotropic orientation of quadruples.
The intensity Acl of the resulting cluster process has been the same in all

cases and the mean number of points in the examined window was 1000. The
parent intensities and cluster sizes at given value of € (in the units of

1/\/Ap) have then been related by AA=AB=ZAC=27\D and §C=gD=»/2gA=\/2§B. The

corresponding Voronoi tessellation was then constructed by the method
described in Ferianc (1991). The edge effects have been removed by
using a broad protecting frame. Several examples of simulated point patterns
together with corresponding Voronoi mosaics are shown in Fig. 1.

RESULTS
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Fig. 1.Voronoi mosaics of GPP at the values 2£=0.1,1 and 4 (in the units of
1/V)p) of the cluster size for the cases A and D.
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A. Analysis of Voronoi mosaics. All results relate to the normalized
quantities a=A7\cl, s=S\/Acl/4 and N and are plotted in Fig’s 2 - 4 as

functions of the cluster size 2€ (in the units of 1/\/7\X, where X=A,B,C,D).

The mean values of cell area, perimeter and number of edges do not exhibit
any systematic dependence on £ and the sample averages have been Ea=0.9995, .
Es=0.9992 and EN=5.9978 with respect to the whole sample of n = 2.8x10
examined cells thus lying within one standard deviation (o¢/vn=0.003 for Ea,
0.0014 for Es and 0.008 for EN) of the PPP.

Cv PPP value
0'75: cell areas
(0.529)
0.5 cell perimeters
| ———
— —— — (0.243)
0.25 = 4 4 e & — — e
number of cell edges (0.223)
0.01 0.03 0.05 0.10 0.30 0.50 1.00 2.00 4.00 2¢

Fig. 2.The dependence of the coefficients of variance CV(a), CV(s) and CV(N)
on the cluster size 2¢. Notation: A(+), B(x), c(d), D(m)).

On the other hand, some characteristics dependent on the higher moments of
distributions reveal systematic dependence on cluster size in the range of
2€e[0,2]. The estimates of the second moments u’z(a) and p’z(s) based on 1000

cells seem to be sufficiently accurate and give smooth dependences of CV(a),
CV(s) on £ approaching the PPP values at 2€=4 - compare Fig. 2. It seems
also, that the difference between GPP and PPP mosaics is slightly greater in
the cases A, C (fixed cluster orientation) than in the cases B, D (isotropic
cluster orientation). In contrast to this behaviour, CV(N) is independent of
cluster size - Fig. 2. The obligatory disappearence of triangles at small
values of £ (2€<0.3) in cases C, D is compensated by a smaller frequency of
polygons with high N. Even a more detailed inspection of the p.d.f. f(N) did
not show other differences in comparison with the Poisson-Voronoi
tessellation or any dependence on either € or the type of ciuster. Probably
the size of the sample was insufficient in this respect.
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Fig. 3.Steiner compacts of Voronoi cells corresponding to clusters of fixed
and isotropic random orientation at different values of cluster size 2¢.
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The values of skewness and kurtosis have not been determined with sufficient
accuracy, nevertheles their scatter is high only in the region of small
cluster sizes, whereas at 2£=4 the PPP values are fairly matched.

The anisotropy of cell boundaries is quite pronounced at small values of £
in the cases A and C as documented by the polygonal approximations of the
corresponding Steiner compacts of mosaics (see e.g. Mecke et al., 1990)
obtained by the graphical method (Rataj & Saxl, 1992) - Fig. 3. The isotropy
of cell boundaries is fully restored not sooner than at 2¢£=4.

B. Analysis of point patterns by quadrat methods. For the comparison, also
selected classical statistical methods for testing point patterns have been
used. Leaving aside the distance method (for theoretical evaluation see
Saxl, this issue) and second order methods, we have focused on the quadrat
methods (Ripley, 1982; Stoyan et al., 1987, 54-64; Cressie, 1991). They
consist in the subdivision of the examined area into a number of smaller
subareas a(i), i=1,2,...,m, and counting the numbers n(i) of points falling
into a(i).

i) Index of dispersion ID. The quantity ID called the index of dispersion is
defined by '

ID = sz(m—1)/5, (2)

where s2 is the sample variance of n(i) and n their sample mean. As the
expected value En equals the variance for the Poisson distribution, ID=m-1
agd if, moreover, m>6 and n>1, then ID follows approximately the
x —distribution with m-1 degrees of freedom. Consequently, we have chosen
m=6+1000. Assuming now that in any point of the parent PPP, a very small
(with respect to the size of a(i)) cluster of p points is implanted, we
obtain ID=p(m-1). Let «(m) be the edge length of the square a(i) in the
units of 1/VA corresponding to the subdivision of the examined area into m
subareas. Then we obtain for the chosen range of m the values a(m)=(9.1+0.7)
for point pairs (the cases A, B) and «(m)=(6.6:0.5) for quadruples (the
cases C, D). The results of the test method are shown in Fig. 4. Small
clusters (2¢£<0.5) are correctly recognized within the whole range of m and
the value of ID is approximately p(m-1). Otherwise, the test breaks down
whenever «(m) approaches the size 2€ of the cluster.
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Fig. 4.The dependence of the index of dispersion on the number m of test
quadrats for clusters of different size 2¢ and the double-sided confidence
interval [xz xz ] at the level a=0.05 (dotted lines).
m-1,1-0, “m-1,

ii) Greig-Smith test for PPP. This test examines contiguous-quadrat data by
a nested analysis of variance: setting m=27, we obtain a sequence of subdi-
visions m, m/2, m/4,...,2 by joining subsequently two neigbouring regions
into one rectangle. We then compare at different size levels i (i=1 corres-
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ponds to the smallest quadrat, the highest i to one half of the observed
window) the sum of Squares of number n of points in the blocs of i-th
sub-division and in unions of neighbouring blocs (say a(j), a(k)) merging
into one in the (i+1)st subdivision . The evaluated statistic is

GSl.=[):Jn?-O.SZU’k](nJ+nk)2]/ﬁl, where )_11 is the mean number of points in

blocs of i-th subdivision (see Rataj et al., 1993; §toyan et al., 1987,
54-64). Under Poisson hypothesis, it follows the x-distribution with 29
degrees of-freedom. The value of g was selected so that nlel, namely g=10.

The results are summarized in Tbl. 2. A scatter of results uses to be
considerable in Greig-Smith test, especially at small degrees of freedon.
Consequently, the clusters of all sizes are not recognized at the size
levels i=9-10. The presence of small clusters (26<1) is revealed at all
levels isB, large clusters with 2€=1 (note that the sizes of a quadruple and
a bloc are comparable at {2¢,i}={(4,7), {2,5}, {1,3}, {0.5,1}) causes the
rejection of Poisson hypothesis at one half (26=1,2) or even only one
quarter (2&£=4) of situations irrespectively of the bloc size.

Table 2. Results of Greig-Smith tests

5 i| 10 9 8 7 6 5 4 3 2 1 |Total Notatisn
201 [+* m|[+xOm| * +* m 11
LO3[+* m[+x0Om| = I * 0 A(+), B(%),
LO5| =0 [+x0O [+ +% * 9 c(0), D(m).
L1 [+%0 *[Om | +*0Om * 11
.3 |+x*0Om [+x0 * O 9
.5 [+ *Om | +x Om +x0Om| 12
1.0|+*0 [+* m|+*0Om +%[] [+ * * *Om | * * 21
2.0 =0 m|++0 |+ 0O *Om | +x0 * @ %0 |+*0m|[+x m| 25
4.0 |+*0m [+*0Om | *0Om |[+*0 * *O |+ | |+x0m [+*0m |[+* m] 31

The absence of a symbol at given values of i, € denotes that
the Poisson hypothesis must be rejected at the level 95% for
the cluster process represented by the missing symbol.

DISCUSSION

The above given results have been obtained with rather small samples of 1000
cells only, nevertheless the important differences between point patterns of
GPP and PPP and between corresponding Voronoi mosaics have been revealed and
the range in which they can be observed, namely 0<2€=1, or, equivalently,
0<§S¢p, has been determined. Note, that this range of values of 2€ in terms

of cluster process parameters is 0<§5V20c and 0<552¢Cl for the cases A,B

1
and C,D, respectively. Further, no observable difference between the
examined cluster process and PPP was found for £>2, i.e. &40 .

For the comparison, the results of the recent paper by Rataj et al. (1993)
can be mentioned. In this paper an oscillating point pattern, namely regular
unit square lattice the points of which have been given an independent shift

following a centred planar normal distribution with variance rZI, has been
examined by several methods of the statistical analysis. Considerable
differences between oscillating pattern and PPP have been observed for r=1,
no differences were detected for rz4, which is the same result as obtained
here. Also the computation of the spherical contact distances (Saxl, 1993)
gives a similar estimate of the critical range of the cluster size.

The comparison of mosaic analysis and quadrat count shows the close
agreement between the both approaches. Nevertheless, when using the quadrat
count, the results must be carefully analysed with respect to the mutual in-
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terference of cluster and quadrat sizes. Moreover, any interpretation of the
the results going beyond simple "reject or accept" statement is difficult as
the meaning of tested statistics is sensible only in the case of PPP. On the
other hand, the mosaic analysis gives meaningful results concerning cell
(i.e. zone of influence) area and shape distributions and/or their moments,
which can be considered also as characteristics of the underlying point
pattern.

It should be stressed, that the above results exhaust in no respect the
possibilities of statistical testing based on Voronoi mosaics. First, we
have omitted the investigation of interior cell angles 6 described in detail
by Hinde and Miles (1980) for PPP; increased frequency of 6=m/2 at small
values of £ would be certainly observable in the cases C and D as well as
departure from the mode and mean value positions. Moreover, the ordinary
equilibrium state condition (Stoyan et al., 1987, 264-8) or, equivalently,
the normality condition (Moeller, 1989) En01=3, i.e. the mean number of

edges emanating from a vertex attains its lower bound, is heavily disturbed
in the cases C and D (frequently four edges emanate from the vertex placed
in the centre of a small quadruple). Consequently, the simple relations
between intensities and marks of the three point processes derived from the
mosaic (nodes, edge mid-points, cell centroids), which are valid for normal
tessellations (Stoyan et al., 1987, 264-8) do not hold either and the
differences can be wused for testing. Finally, also the edge length
distribution can be examined and compared with that one of Poisson-Voronoi
tessellation, which is known (Muche, 1993).
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