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ABSTRACT

This paper presents formulas for the Voronoi tessellation which is generated by a
stationary Poisson process in RY. Expressions are given for the chord length distribution
and the edge length distribution function. Furthermore, the behaviour of the pair
correlation function of the point process of vertices of the planar Voronoi tessellation for
small arguments is discussed. Finally, some characteristics concerning the "typical”

edge of the spatial Voronoi tessellation are given.
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1. INTRODUCTION

The Poisson-Voronoi tessellation has been studied intensively in many papers, (Gilbert,
1962; Miles, 1972; Miles, 1974; Miles, 1984; Mgller, 1989) and books (Okabe, Boots,
Sugihara, 1992; Stoyan, Kendall, Mecke, 1987.) But in spite of the simple structure of
the model there are still many severe problems which are far away from a satisfactory
analytical solution.

The present paper gives some results obtained for the Poisson-Voronoi tessellation. The
determination of the chord length distribution functions is based on special geometrical
properties of the Poisson-Voronoi tessellation and on the connection to the linear
contact distribution function.

The chapters concerning the distributional properties of the edges and vertices of the
Poisson-Voronoi tessellation are based on the Palm distribution of the point process of
vertices, or, in other terms, of the neighbourhood of the "typical” vertex. [The word
"typical” is used as in Stoyan, Kendall, Mecke (1987), p. 110.] There Formula (76) of

Miles (1974) leads to analytical results of a form which is accessible for computations.
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The determinations are long and complicated, so that this paper gives the main results
only. Technical details are mostly omitted here and can be found in Muche (1993a),
Muche (1993b) and Muche (1993c).

2. THE CHORD LENGTH DISTRIBUTION FUNCTION

The Poisson-Voronoi tessellation in R? is defined with respect to the points of a
stationary Poisson process @ of intensity A. With probability 1 there exists a unique cell
Z which contains the origin o. Z is associated with that point z; of ® which is the

nearest neighbour of o i.e.
ZO:{yERd‘”y—zOHSHy—z"for alle‘I)}. (1)

The term contact distribution is used as in Stoyan, Kendall, Mecke (1987). For a given
random closed set = and a convex compact set B containing the origin o, the contact

distribution function H g is defined by
Hg(r)=P(ENrB=0|o¢Z), r>0. (2)

Here Z is the union of all cell boundaries of the Poisson-Voronoi tessellation. Since Zj is
convex and o is almost surely an interior point of Z; and the cells have disjoint
topological interiors, it follows that Hpg(r) =1— P(rB C Z)) for every B. If B is the
unit segment s(0,1), then the notation H(r) is used; this function is said to be the linear

contact distribution function. Geometrical considerations lead to the formula

oo T
Hr)=1- Cd/\J J'pd~ 14ind—2, exp(—- /\l/d(B,.,p,a)) dadp, r >0, (3)
00

where B, , , is the union of two spheres with radii p and p? — pr cosa + 7% and

distance r between the midpoints and v, denotes the d-dimensional Lebesgue measure,
¢y is a real constant and « is the angle between s(0,1) and the line connecting o and the
point with the polar coordinates p and o. This result has already been found by Gilbert
(1962) for the planar (d =2) and the spatial (d =3) case. It is wellknown, that the
linear contact distribution function H;, and the chord length distribution function
L(r) are linked by r
Hr)=1 j(l — L)) dl, r>0, (4)
0

where [ is the mean chord length, (Gilbert, 1962). Thus the chord length distribution
function of the Poisson-Voronoi tessellation is

_1 T

(e/e]
Lir)=1-1 27r 7 z 22 J j o~ Lsind =20 (Luy(By, p0) ) exp( — W y(By o)) dr do,
2 0 r>0. (5)

The integral formulas for the distribution functions and for the corresponding density

functions can be used for a numerical evaluation.
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Fig. 1. The density function of the chord length distribution of the Poisson-Voronoi
tessellation in [Rd, d=23,..,7. The intensity of the generating Poisson point

process is 1.

3. EDGE LENGTH DISTRIBUTION FUNCTIONS
Consider the “typical” vertex of the Poisson-Voronoi tessellation in RY which is
surrounded by d 4 1 centres (points of @) By, By %4 4 1 with the same distances

12l =1%2]= - = |24 41| = A (6)

Miles (1974) has given with Formula (76), p. 225

2—
fA,Ul,Uz,...,Ud+1(6’"1’"2""’“d+ 1) x §4 -1 exp(— ud(b(o,l))6d>. vaugug, .y 1) (7)

the joint distribution of the size of the sphere b(0,A) and the configuration of the
centres onto it. The U; (i = 1,2,...,d +1) are the projections of the z; onto the unit

sphere. In the case d =2 several results are wellknown, i.e. the marginal density

functions fA(g) = 9272)2 5sexp ( _ /\71_52) , §>0 (8)
and
Fo(w) :%sin%((w—%)cos%%—sin%) , 0<w< 27, (9)

for one central angle Q) chosen at random i.e. that spanned by %, and %y. Using these
results, the distribution function of the length of the “typical” edge (edge length
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distribution function) of the planar Poisson-Voronoi tessellation can be written in the

form
2

Fy(r) = J j (1 —exp(—/\VQ(C(é,w,r)))) FA(6) Fo(w) dw ds, >0, (10)
00

where C(8,w,r) is the set

Clbwyr) = b<z, “z—(&%}”) \b(0,6) (11)
and r is the point with the coordinate r liing on the positive x)-axis.
The method allows an extension in higher dimensional spaces, by partly solving Miles
formula. Thus the edge length distribution function is obtained for the Poisson-Voronoi

tessellation in R? and for a plane intersection through a Poisson-Voronoi tessellation in
RY, d > 3.

4 2 d=7
6
J:
3 4
3
2 1
1
1 2
a) b)
Fig. 2. Density functions of the length of the "typical” edge (a) of the Poisson-

Voronoi tessellation in R? and (b) for a plane intersection through a Poisson-Voronoi

tessellation in RY. The intensity of the generating Poisson point process is 1.

4. CHARACTERISTICS FOR THE VERTICES OF THE PLANAR POISSON-
VORONOI TESSELLATION

The point process of vertices of the planar Voronoi tessellation, denoted by ®? is in close
connection to the generating Poisson point process ® in RZ.

The IK-function and the pair correlation function are important second order
characteristics of a stationary and isotropic point process. Ripley’s K-function or the
reduced second moment measure function K(r) (Stoyan, Kendall, Mecke, 1987, p. 50)
for a point process in R? is the mean value of points of it in a circle with radius »
around its "typical” point, without the "typical” point itself, divided by the intensity of
the point process. The corresponding pair correlation function g¢(r) is defined as the
second order product density (Stoyan, Kendall, Mecke, 1987, p. 47) divided by the
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square of the intensity of the point process. If K(r) is differentiable in r the relation

9(r) = g LK (1), (12)
holds. Construction of special bounding functions K (r) and K ,(r) with
Ki(r) SK() < Ky(r), 730 (13)
with the properties K(0) = K ,(0) = 0 and dirKl(O) = %KU(O) leads to the value of the
derivative dirK(O) = 93i% . The appearance of a pole of the pair correlation function of a
m

point process which is in close connection to the Poisson process may be surprising. But
it is in correspondence with empirical results. Namely the pair correlation function of v
has been studied in at least two papers by simulation, (Stoyan, Stoyan, 1990; Icke, van
de Weygaert, 1991). In both papers great values of ¢(r) were obtained for small » and
thus a pole of an order of near 1 at r = 0 was conjectured.

It can be proved that the pair correlation function takes a pole of exact first order at

r=0.
5. CHARACTERISTICS OF THE SPATIAL POISSON-VORONOI TESSELLATION

In counterpart to the planar case, Miles’ Formula (76) was hardly applied for the spatial
case until now. In a long but elementary way of rotations and other transformations
Miles’ Formula takes a form which is more tractable for the analytical determination of
some characteristics concerning the "typical” edge.

The "typical” edge of the Poisson-Voronoj tessellation in R3 has almost surely three
emanating faces which generate three random angles (face angles) 0, Oy and

O3=21-0, - ©y perpendicular on the ”typical” edge. Their common density is
Fo,,0,015) = Ly sin® sin2dy sin(d, +9,), 79 <dy<x 0<g <n (14)
0,0, 12 =3 g 1 2 1T Y2) 1.=Pgsy Uz
and the marginal density of one of the face angles O is

fo(¥) = 3—8—2 sin219[19(3 — 2 sin%9) — 3 sind cosﬂ] , 0<9<7 (15)
m

Do

with EO = %r and var® = L8 =

H
oole

Consider now the circle perpendicular to the "typical” edge spanned by its three
neighbouring centres. If 2 denotes one point of this circle and e; and ey the endpoints of
the "typical” edge, then a random angle I is formed by z,e) and ey. Its density function

18
fr(1) =198 (1 + cosn)sindy, 0 <y <, 16}
1

. _ 849 _
with EI‘—FW and varl' = 522 ™~ 55050 °
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Fig. 3. Density function of the face angle, Fig. 4. Density function of the angle span-
perpendicular to the "typical” edge, span- ned by the line passing one neighbouring
ned by two of the emanating faces. centre and one endpoint of the "typical”

edge and the "typical” edge.
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