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ABSTRACT

The Neyman—Scott cluster pro%ess of regular 2k—tuples — vertices of a k—cube
of random edge length in R , k=0,H.,d, is considered. The attention is
focused on the properties of the spherical contact distribution function
H(£). It is shown that the corresponding probability density function h(U
is in certain sense intermediate between hp(£) of the parent process and

hCl(E) of the Poisson point process of the daughter process intensity AC1.
d 1 2 3Particular cases of point pairs and 2 —tuples of constant size in R , R , R

as well as the effect of the edge length distribution are treated in detail
and the results are presented in a graphical form.
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INTRODUCTION

In the present contribution, an attractive combination of randomness and
regularity in the arrangement ofda spatial point pattern is considered,
namely the Boolean model E (in R ) of regular clusters Ck formed by the

vertices of a k—dimensional cube, Osksd, In the full generality, we consider
a cluster process of the Neyman—Scott type with a typical cluster N0 being

either a void set or a regular 2k—tuple Ck of points — vertices of a k—cube

centred in the origin O, k=O,...,d, with the probabilities p_1,p0,p1,...,pd

fulfilling the condition E?1pj=1. The size of the cube can be a random

variable with the distribution Fk(§)=Pr(akSE), where Zak is the cube edge.

Finally, the orientation of the cluster can be either random (preferably
isotropic) or arbitrary fixed. Such a special type of the Neyman—Scott
process generalizes the Gauss—Poisson process (Milne and Westcott, 1972;
Stoyan et al., 1987).

SPHERICAL CONTACT DISTANCES

>-The spherical contact distribution function H(£] of a can be derived using
the well known formula valid for the Boolean model (Stoyan et al., 1987)

H(£)=1—exp[—ApEvd(N0@B(O,Z))1. (1)

where vd(A) is the d—dimensi0na1 volume of a set A, B(O,r) is a d—bal1 of
















