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ABSTRACT

Different approaches for centering estimation of a point x in a planar convex body are
proposed. They lead to measures of symmetry and critical points. This paper recalls that
symmetry estimation is deeply related to underlying metrics.
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INTRODUCTION

In the field of Image Analysis the lack of mathematical tools often forbids rigorous
developments. On the other hand, the set of convex bodies has been thoroughly studied
providing a lot of concepts and techniques whose interest for applications is undoubtful.

The aim of this paper is to bring some answers to the question : "How to define the
centering degree of a point belonging to a convex body?" In order to give a sound foundation to
such concepts, we need to introduce different real valued functions for centering estimation of a
point x in a convex body K. For each of them, the critical point x* realizing the best centering
leads to a measure of symmetry.

Let us recall (Griinbaum, 1963) that a real valued function F defined on the set X of

planar convex bodies (i.e. the set of compact convex sets in IR with non empty interior) is a
measure of symmetry provided :
For every convex body K 0<FXK)<1
F(K)=1 & K is centrally symmetric
F(K) = F(T(K)) for every affine transformation T.
F is continuous (on the set of classes of convex bodies
equivalent under affine transformations).

Symmetry parameters and metrics are deeply linked. From a metric d on %, a measure of

symmetry can be deduced by F(K) = exp(- dj(K, §)) where 8 denotes the subset of &
consisting of centrally symmetric convex bodies (symmetric with respect to an interior point)

and di(K, 8) =inf {d(K, S);Se §}.
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BESICOVITCH FUNCTION

Let x be a point in K and K-(x) the symmetrical set of K with respect to x. Let pu(K)
design the area of K (see Fig. 1).

Fig. 1. Representation of K and K-(x)

The centering of x (Besicovitch, 1948) is estimated by :
(KNK- (x))
: ()
H(K)
which gives the proportion filled by the maximal central convex body included in K,

centered at x. The upper bound of f;(x, K) is reached at a unique point x,* in K, called
Besicovitch critical point. which is a consequence of the strict convexity and compactness of

the sets {x € K; fj(x, K) 2 a } (for a > 0) (see the proof in Stein, 1956)

f1(x, K) =

x1* is the center of the biggest central convex body included in K.

Let F1(K) = f(x;*, K), the following properties hold :

vV Ke K F1(K) € [2/3, 1] (Besicovitch, 1948)
Fi1(K) =2/3 & Kis a triangle (Fary, 1950)
Fi(K)=1 < Kis centrally symmetric

It' s easy to prove that F1(K) is a measure of symmetry of K.

The Besicovitch function.can be linked with the metric dA defined by :

dA(A, B) = (A U B) - L(A N B) VY (A, B) e 2.
which can also be expressed : dAK, K- (x)) =2 p(K) (1 -1} (x,K))
dA (K, K-(x))

thus the following result holds : fi(x, K) =1 - 2U(K) 2)

WINTERNITZ FUNCTION (Griinbaum, 1963)

For each point x of K, and each oriented line Dy through x, we consider the ratio of
the areas of the two parts of K (left and right) determined by Dg (see Fig. 2).

0
ML(X)

Fig. 2. partition of the area of K into py (x, 8) and Hr(x, 0)
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For Winternitz the centering of x is estimated by the lowest ratio of these two areas
when 6 € [0, 2x]. Thus the Winternitz function can be defined by :

f06, K) = Inf (FLE 0 00001 )
HR(x, 6)

The same argument as in the precedent paragraph proves that the upper bound of fo(x, K) is
reached at a unique point x,* in K called Winternitz critical point.

Thus fa(xo*, K ) = Sup { fr(x,K)/xeK ) 4)

Let Fa(K) = fy(xo*, K), the following properties hold (Eggleston, 1958 ; Griinbaum, 1963)
V Ke K Fa(K)e [4/5, 1]
F(K) = 4/5 © Kis a triangle,
Fp(K) =1 < Kis centrally symmetric,

F»(K) is a measure of symmetry of K.

Until now we did not find a metric which could be linked with F.

MINKOWSKI FUNCTION (Griinbaum, 1963)

Let x € K and 6e [0, 2r]. hk(x, 8) (respectively hg(x, 6+m)) is the euclidean distance

between x and the support line Dy (respectively Dy ) of direction 0+7/2 (respectively 0+37/2 )
(see Fig. 3a).
The following Minkowski function f3 estimates the centering of x related to the support lines Dy

and Doy where 6 € [0, 27], i.e. the lower bound of the mapping 6 ----> §_hK(X’ 8)

hg (x, 6+m)
B30, K) =Tnf ( K® O 0100 } ©)
hg(x, 8+n)

As in the precedent paragraphs, one can prove (Griinbaum, 1963) that there exists also
a unique critical point x3* called Minkowski critical point which realizes the upper bound of
f3(x, K) when x moves in K.

3 (x3*%, K) = Sup {f3(x, K )/ xe K ) 6)
Let F3(K) =4 (x3%, K), the following properties hold (Griinbaum, 1963) :
V Ke X F3(K) e [1/2, 1]
F3(K) = 1/2 & Kis a triangle.
F3(K) =1 < Kiis centrally symmetric.

F3(K) is a measure of symmetry of K,
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Fig. 3a Fig. 3b
Support lines of direction 8 and a chord of direction 6 through x

Let [m(0), p(8)] be a chord in K of direction 0 through the point x (see Fig. 3b).
xm(0)
xp(6)

where xm(0) and xp(0) denote the lengths of the segments [xm(6)] and [xp(6)].
We can prove that '

Let g(x, K) = Inf{

,0€[0,2r] }  (7)

g(x, K) = f3(x, K) (8)

That result is a consequence of the inclusions :
K o H(x, -f3(x, K) ) (K) and K > H(x, - g(x, K)) (K)
(where H(x, A)(K) denotes the homothetic to K centered at x in the ratio A) which implies :
Y 6 e [0, 2n] xm(0) > f3(x, K) xp(8) and hk(x, 8) > g(x, K) hk(x, 0+1))

It means the best centering for Minkowski is the same if we consider
the distances on the chords of K (radial functions) or the distances to parallel
support lines of K (support functions).

Let us note that Hammer (1951) studied the infimum g(x, K) ; he did not notice that it
was the Minkowski ratio but he proved that if the centroid of K is the point of trisection of any
chord then K is a triangle.

f3 can be linked with Asplund distance:
Let us recall that the Asplund distance da(K, L) (K and L elements of %) is defined by :

(=

da (K,L) =Log (inf { —; (0o, B) € R¥*2; 00 K> L and L B K up to a translation})

The following result holds :
f3(x3%*, K) = exp( - da(K, S(K))
where S(K) denotes the Minkowki symmetrical set of K :

S(K) = 1/2(K @ K-) (Delfiner,1979)
where K- is the symmetrical set of K with respect to the origin and @ is the Minkowski
addition defined, for A and C two compact sets of IRZ, by A@C={a+c;ae A,ce C).
Since dA(K, S(K)) =da(K, 8) it follows

f3(x3*, K) = exp(-da (K, §)).
For the precedent measures, the triangle is the most asymmetric convex body.

If K is a triangle its centroid is at the same time the Winternitz, Besicovitch and Minkowski
critical point. It is not true in general.
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OTHER CHARACTERISTIC POINTS

The use of chords in a convex body leads to other characteristic points (see Fig. 4).
<

m(0)

Fig. 4. visualisation of f4(x, K) and f5(x, K)

Let f4(x, K) = Inf {xm(0)/ 0 € [0, 2] } and f5(x, K) = Sup {xm(B)/ 8 € [0, 2n) )
f4(x, K) is the euclidean distance from x to the boundary of K. The radius 1(K) of the
largest disk inscribed in K can be expressed by :
r(K) =Sup {f4(x,K)/x e K } )
This upperbound is reached by at least one point x4* (incentre) belonging to the ultimate
morphological eroded set of K.
f5(x, K') is the greatest distance from x to a point of the edge of K.
The radius R(K) of the smallest disk circumscribed to K can be expressed by :
R(K) = Inf {fs(x,K)/x e K ) (10)
This lower bound is reached by a unique point xs* (circumcentre ).
X4* and xs* are characteristic points of K because they are similarity invariant (i.e.
invariant under similarities). They do not lead to asymmetry measures but to a well known
circularity measure

C(K) = l;((ll(()) which realizes :

VKe X CK)e 10, 1]

C(K) =1 K is a disk.
C(K) = exp (-dA(K, B) ) where B is the (unit ) disk.

SOME EXAMPLES

Let K1 and K3 be two convex bodies (see Fig. 5). In these examples, the characteristic
points are placed on the symmetry line (0X).We have also considered the situation (on the
line (0X) ) of the centroid (denoted by g) of each body, because it seems interesting to
compare the proximity of the centroid with all the characteristic points. Their respective
abscisses and associated Symmetry measures are presented in table 1. It permits to conclude that
K2 is less symmetric than K7 with respect to all these symmetry measures.

A¥1 b 1 Iy
S Ve nd

Kj Ko
Fig. 5. polygon K and half-circle K2 used for the numerical application
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Table 1. values of the different symmetry coefficients for the shapes K; and Ky
Xg X1* F1(K) X2* F2(K) X3%* F3(K)
K1 | 5/18 0.25 5/6 1-1V2 | =0.892 1/3 51
= 0.277 =0.833 =~ 0.293 = (0.333 =0.714
K2 | 4/3n ~0.447 | =0.819 =0.430 | =0.885 V21 2-V2
=0.424 = 0.414 =0.586

The determination of the critical points x;* is not easy, in general.
We can evaluate the centering of the centroid g of K by using fi(g, K) fori=1, 2, 3.
As g is an affine invariant point fj(g, K) is a measure of symmetry of K. It has been proved that
the bounds of fj(g, K) are the same as F;(K) (Griinbaum, 1963 ).
We give some results for the precedent examples :

f1(g, K;) = 0.831 f2(g, K;) = 0.876 f3(g, K1) = 0.636.

fi(g, Ky) = 0.815 fa(g, Kp) = 0.871 f3(g, Kp) = 0.695.
Thus the centroid of K is less centered in K than the centroid of Kj.

CONCLUSION

We have tried in this paper to give again some interest for symmetry measures
discovered but not explored by a few mathematicians of the beginning and the middle of the
century. Such measures were not implemented until now. The improvement of informatical
tools allows to compute the critical points and their associated symmetry measures: see for
example Moreau (1987) and Rubio (1990) for the computation of Besicovitch and Minkowski
coefficients. After noticing the nearness of the centroid with the critical points, the algorithms
start from the centroid and detect the "best" neighbouring point (for the considered function fj).
The properties of continuity of these measures are useful when we have to evaluate a distortion
of a planar shape with a reference one.
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