ACTA STEREOL 1993; 12/2: 73-84
PROC 6ECS PRAGUE, 1993
REVIEW ARTICLE - KEY-NOTE LECTURE

THE DETERMINATION OF SHAPE AND MEAN SHAPE
FROM SECTIONS AND PROJECTIONS

Wolfgang Weil

Mathematisches Institut II, Universitat Karlsruhe, D-76128 Karlsruhe,
Germany

ABSTRACT

Classical and recent uniqueness results for convex bodjes by sections or projections
are described and the corresponding estimation problems from incomplete information
are discussed. The results are applied to planar random sets, spatial fibre processes,
and Boolean models. It is shown that convex mean bodies can give information about
the shape distribution even for random structures of a non-convex nature.
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1. INTRODUCTION

Modern stereology no longer aims only for numerical estimators of volume, surface
area, etc., but also intends to infer additional information about shape from sections
and/or projections. Classical convex geometry provides a number of uniqueness results
for sections and projections of compact convex sets (convex bodies) in d-space R¢, d > 2,
which can be of some use in stereological problems.

In the following, we first give a short survey of some classical and new reconstruction
problems for single convex bodies from section or projection means (projection bodies,
mean section bodies). We show in particular that certain integral operators on the
sphere play a major role in these uniqueness problems and indicate the use of spherical
harmonics in solving the corresponding integral equations. We also discuss the associ-
ated approximation problems which correspond to the statistical estimation in practice
and show how convex geometry can help to overcome the instability of ill-posed inverse
problems.

Then, it will be shown how convex bodies arise in stochastic geometry in connection
with stationary random sets and random particle processes (in a direct or indirect way)
as mean bodies and how some of the techniques described can be used to estimate mean
shapes and related distributions (directional distributions).

In particular, three situations are discussed in more detail where the structure un-
der consideration is non-convex, but convex bodies arise in an indirect manner. The
first example of that kind arises in connection with the description of the anisotropy
of a stationary random closed set in the plane. The second example is the problem of
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obtaining the directional distribution of a stationary fibre process X in R3, which is
to be estimated from the intensity of the intersection point process X N E; in finitely
many planar sections (with planes FEy, ..., E}). Finally, the third situation concerns sta-
tionary, but non-isotropic Boolean models ¥ with compact grains in R? or R®. Here,
in the planar case and for, in general, non-convex grains, a convex mean body can be
introduced which gives information about the deviation from isotropy and which can be
estimated from finitely many realizations of the union set Y. In three dimensions (and
for convex grains) a similarly defined mean body is shown to be uniquely determined

by the corresponding mean bodies of (randomly chosen) planar sections of the Boolean

model Y.

2. UNIQUENESS THEOREMS FOR CONVEX BODIES

For applications in stereology, convex sets in the plane or in three-dimensional space
suffice. Generally, from the theoretical point of view, there is a significant difference
between the two-dimensional and the three-dimensional situation. Phenomena of this
kind will be described later in this section. It is for some parts of this presentation
convenient to work with convex sets in d-dimensional space R¢ and to distinguish the
two cases d = 2 and d = 3 afterwards. Therefore, we consider now conves bodies I C R?
(these are compact convex subsets of R with non-empty interior) and denote by K¢
the class of all convex bodies. For background information on convex bodies, Bonnesen
and Fenchel (1934) is a classical reference; a modern and up-to-date treatment of the
theory can be found in Schneider (1993).

In the following, L always denotes a linear subspace in R?, whereas E denotes an
affine subspace. We let £¢ and £ denote the set of all (linear resp. affine) subspaces
in R? of dimension k, k € {1,...,d — 1}. It is obvious that the orthogonal projection
K|L of K onto L and the intersection I N E of K with E are convex bodies (of
dimension k) in L resp. E. It is also simple to show that the family {K|L : L € £¢}
resp. {KNE : E € &} uniquely determines the original body K. It is therefore more
interesting, both from a theoretical point of view as well as for stereological applications,
to modify the uniqueness problems in an appropriate way.

2A. PROJECTIONS

For projections we therefore consider the question, how far I is determined by
its projection function vx(K,L), L € L¢. vi(K, L) is defined as the (k-dimensional)
content of K|L. We also concentrate on the case k = d — 1 and replace each (d — 1)-
dimensional subspace L by its normal vector u (more precisely, by its antipodal pair
{u,—u} of normal vectors). We assume u € §, where Q is the unit sphere in R¢. In
this case vq—1 (I, ) can be viewed as an even continuous function on . It is clear that
any translate K + ¢ and also the reflection —K = {—z : @ € I{} of K have the same
projection function as K. Therefore we can only expect to determine a convex body I
up to a translation and reflection. Consequently, we now concentrate on convex bodies
which are centrally symmetric with respect to the origin 0 and denote this class by K¢.
The following uniqueness result is a famous theorem of Aleksandrov (1937).

Theorem 1 (Aleksandrov). Given K,K' € K¢ with vg_1(K,-) = va_1(K',-), then
K =K'

It is worthwhile to give an analytic interpretation of this result, since the latter relates
the proof to a well-known integral equation. It follows from the general theory of mixed
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volumes (but could also be obtained directly for polytopes K and then by approximation
for general convex bodies I) that

vg—1(K,z) = %/ [cos a(z,u)| dSq_1(K,u), = € Q. (1)
Q

Here, a(z,u) denotes the angle (in [0, 7]) between the unit vectors & and u and Sy_; (K,-)
is the surface area measure of the body K. For a Borel set A in the unit sphere 2,
Sa—1(K, A) is defined as the total surface area of those boundary points of K which
have an outward normal vector in A; for example, for a polytope P, Sq_1(P,-) is a
discrete measure which is concentrated on the finitely many facet normals ULy ooy Uy Of
P, the value Sy_,(P, {u:}) being the (d — 1)-content of the facet P(u;). By a theorem
of Minkowski, any (nonnegative) Borel measure f on § which is full-dimensional (i.e.
not concentrated on a subsphere) and has center of mass at the origin, is the surface
area measure of a convex body K, which is unique up to a translation. Hence, K is
centrally symmetric if and only if Sa—1(XK, ) is even.

The uniqueness problem behind Theorem 1 thus reduces to the question whether the
function vg_y (X, ) in (1) determines the measure Sa-1(X, ) uniquely. It is convenient
here to consider (1) in a slightly more general form as

h= /9 [cos (-, w)| dp(u), (2)

where 1 is a measure and h a continuous function on Q. It is interesting to note that
for the inversion of (2) the symmetry of u is necessary (which implies that % is even).
To understand this phenomenon, a small excursion to harmonic analysis on the sphere
{2 is helpful. This will be done in section 2C.

More important for applications is the lack of stability of the integral equation (2)
in dimension d = 3. The main reason for this is the fact that the function % is of
a very special kind; it is the support function h(Z,-) of a centrally symmetric convex
body Z which can be approximated by finite (Minkowski) sums of segments. In convex
geometry, these bodies Z are called zonoids (Matheron (1975) used the term Steiner
compacts). Zonoids (with inner points) build a small subclass of Kl eg. a polytope
P is a zonoid if (and only if) all faces (of all dimensions) of P have a center. Such
polytopes are called zonotopes.

If h=v4_q(K,), the zonoid Z with h — h(Z,-) is called the projection body TIIK
of K. In the planar case, IIK is simply obtained from K by a 90° rotation (SyPR
Consequently, any K € K2 is a zonoid and the integral equation (2) is stable. Inversion
of (2) or approximation of  are therefore not problematic in R2,

We will continue the discussion of these questions in 2C.

2B. SECTIONS

With respect to sections, a corresponding uniqueness problem has to be formulated
in a different manner. If, for E ¢ &, wi (K, E) denotes the k-dimensional content of the
section ' N E, then the function wi (I, ) obviously determines K, since K is already
specified by the support of this function. Moreover, from a stereological point of view,
the evaluation of characteristics of sections K N E which depend on the spatial position
of E, seems to be a difficult task. Therefore, we consider the mean section body M (K)



76 WEIL W: DETERMINATION OF SHAPE AND MEAN SHAPE

of K € K. The simplest way to define My (K) is by its support function (a procedure
which shows some similarity with (1)), namely

h(M(K), 2) = /e (K N E,2) du(B), = € Q. 3)

Here, pé is the (suitably normalized) motion invariant measure on £¢ and, in order to
fix the position of M} (K) among all translates, we assume in addition that the Steiner
point of M (K) is at the origin, i.e.

/Q:v h(My(K),z) d\(z) =0

(here A denotes the spherical Lebesgue measure). My(K) can be interpreted as the limit
of Minkowski sums of (independent random) k-dimensional sections of K. The shape
of M(I) is thus not affected by individual translations of the sectioned sets K N B,
a fact which makes the mean section body interesting for stereological applications.
The basis for a reconstruction of K from section means would be a uniqueness theorem
for My(K). It turns out that here the case k = 1 (linear sections) is not interesting,
the corresponding mean section body M;(K) is always a ball (of radius proportional
to the volume of ) and therefore does not determine K. In the sequel, we therefore
concentrate on planar sections k = 2. The following uniqueness result was obtained in
Goodey and Weil (1992). It looks similar to Theorem 1, but the main difference is that
no symmetry is assumed.

Theorem 2. Given K, K' € K? with h(My(K),-) = h(My(K"), -), then K = K', up to

a translation.

The common background of both theorems becomes apparent from the following integral
formula for h(M2(K),-) which results from (3) with the use of more general formulae
from translative integral geometry,

WMy (), ) = "25=2 / alz,u)sina(e,u) dSa_i(~K,u), s€Q,  (4)
Q

(2)'”

(where «; is the j-volume of the j-dimensional unit ball). Again, instead of (4), we
consider the integral equation in a slightly more general form,

h = /ﬂa(-,u)sina(-,u) dp(u), (5)

where y is now a general measure (without the - striction of evenness) on §2.

The remarks made above in connection with (2) can be made in an analogous way
for (5). The instability of (5) is expressed by the fact that the functions &, occurring on
the left-hand side of (5) are support functions of special convex bodies. The difference
to the previous situation is that the corresponding class {My(K) : K € K4} (resp. its
closure in the Hausdorff metric) is not yet characterized. Only for symmetric I it is
known that M, (K) is an iterated projection body, hence a special zonoid. Due to this
open characterization problem, the use of Theorem 2 in practical applications is limited,
up to now.
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2C. STABILITY AND APPROXIMATION

As remarked the joint background for the uniqueness results in Theorems 1 and 2
as well as the difference in the symmetry assumptions conclude from harmonic analysis
on the sphere Q. Here, we give some further details which also explain the problems
with stability and approximation.

The basic result is the Funk-Hecke Theorem for spherical harmonics (restrictions
of homogeneous polynomials to the sphere), which we state here in a convenient form
which can be found e.g. in Schneider (1970). In the following result, CS™2/2 s the
Gegenbauer polynomial of order % and degree m and S,, denotes a spherical harmonic
of degree m.

Theorem 3 (Schneider). Let f be a continuous function on [—1,1] and
Amlf] = /11 F@&) CED2 () (1 — 12) =312 gy 0,1,2,...
Then for a signed Borel measure p on Q the condition
/Qf(cos a(z,v)) dp(v) =0 for all z € 0

implies p = 0 if and only of p fulfills

/ Sm(u) da(u) = 0 (6)
Q

for all Sy, and m € {0,1,2,...} with Am[f] = 0.

In the case of equation (1), this result is applied with f(2) = |¢| and p = Sa—1(I,)—
Sa—1(K',+). Then, A\, [f] #0 precisely for even m, hence the above condition has to be
checked for odd m only. In that case S,, is an odd function, hence (6) is fulfilled since
p is even,

In the case of equation (4), we choose f(t) = {arccos (t)} (1—2)1/2. Here, all coeffi-
cients A [f],m =0, 1,2, ..., are non-zero and therefore p = Sy (K, )=Sa—1(K',) = 0.

The spherical harmonics approach not only solves the uniqueness problems, it can
also be used for the inversion of (2) and (5) in the smooth case. If the function h has
sufficient smoothness (in case of (2), differentiability of order d + 3 is sufficient), then
the measure i has a continuous density ¢ w.r.t. ), and the functions % and ¢ have an
expansion (as an, in general, infinite series) into spherical harmonics, the coefficients of
which are directly related. We do not give the corresponding formulae here, but refer
to Schneider (1967), for further details. We use this fact, however, to comment on an
important consequence of this expansion.

Obviously, the finite partial sums of such a, series can be used for an approximation
of g. This suggests the following inversion procedure which can be put into practice:
replace the given function & by a smooth approximation /~1,, produce an approximate
inverse § of h by expansion into a finite series of spherical harmonics, use § as an
approximation for ¢g. The already mentioned instability of the integral equations (2)
and (5) is expressed by the fact that such an approximation procedure as the one just
described does not work in dimension d — 3. The reason is the already mentioned special
nature of the functions A, which implies that a smooth approximation A is in general
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not in this class anymore and consequently § is not close to g as a continuous function.
Even the measure fi (which has § as its density) is close to p only in the topology
of Schwartz distributions, which means that it need not be a nonnegative measure at
all. This phenomenon has a serious effect if, in the case of stochastic applications, p
represents a probability distribution which is to be estimated.

Such estimation or approximation problems usually occur in stereology, since there
only finitely many sections or projections can be evaluated. Consequently, in any such
application, only finitely many values of h(uy), ..., h(uy) of the function k in (2) or (5) (or
even approximations of these values only) will be available, and it is the task to obtain
an approximation of y from these data, e.g. by an interpolation of h(uy), ..., h(ug) with
a smooth or a piecewise linear function and a subsequent inversion.

In this situation, geometry can help, at least in the situation of (2), since here
the functions h are characterized to be support functions of zonoids. For (5) the cor-
responding theory is still to be developed based on an appropriate characterization of
mean section bodies.

With respect to (2), the basic idea is to approximate the values h(u1), ..., h(ug) by
the support values h(Zg,uq),..., h(Zx,ux) of a simple convex body Z; which belongs
to the class of zonoids and for which the inversion of the integral equation (2) is easy,
namely a zonotope. The following result was shown in Campi et al. (1993). For the
formulation, we denote by [—z,z], z € §, the segment from —z to z and by 6, the
discrete measure concentrated on {—z,z} and giving measure 1 to each point. The &
planes through the origin and orthogonal to up,...,ux (respectively) divide R? into m

closed polyhedral cones Cf, ..., C,, (with interior points), m < 2¥. For i = 1,...,m and
J = 1,..,k, the sign of cosa(uj,z;) does not change as z; runs through all (interior)
elements of C;. We put €;; = 1 if this sign is positive and €;; = —1 if it is negative.

Theorem 4. Let 1 be an even finite measure on ) generating a function h by equation
(2). Let uy,...,ux € Q be arbitrary. Then there ezist k points x1,...,zx € Q and weights
ay 2 0,...,ar > 0 such that the zonotope

k
Zr = Za,‘ [—-.’D,’,ﬂ:,‘]
i=1

fulfills
h(Zi,ur) = h(u1), .., h(Zg,ur) = h(ug).

The linear program (LP)

m

k
Minimize f(y1,...,Ym) = Z(h(uj — Z €ij cosa(u;,vi)))

j=1 i=1

m
subject to Ze,-j cos a(uj,yi) < h(uj), 7 =1,...,k,

i=1
and y; € C;, 1 =1,...,m.

is solvable and any vertez solution of (LP) has at most k non-zero entries yi,,..., Vi,
from which the points xq, ...,z and weights aq, ...,y result due to the equations

Yi, = a1y, ooy Yip = QT
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If ua,...,ux are independent uniform random directions in 2, then the resulting discrete

measures
k
Kk = Z ai(s::;
i=1

converge weakly towards p, as k — oo,

The two-dimensional situation is much simpler, since in R? any centrally symmetric
body is a zonoid, hence any centrally symmetric polygon is a zonotope and can be used
for the approximation, in analogy to Theorem 4 (but without solving a linear program).
In particular, the k lines

{zeR?: cosa(z,ui) = h(u;)}, i =1,...,k,

and their reflections build the boundary of such a zonotope. This geometric approach
is the basis of the procedure described in Rataj and Saxl (1989).

3. MEAN SHAPES IN STOCHASTIC GEOMETRY

The random models which have been developed and successfully used in stereology
in the last decades are the stationary random closed sets and the stationary random col-
lections of (possibly overlapping) compact sets (the stationary particle point processes).
If such random structures X are, in addition, isotropic, any suitably defined mean shape
will be a ball. Hence, in the following we are interested in non-isotropic structures X,
in particular a mean shape of X should reflect the degree of anisotropy of X.

As is to be expected, there will be a difference between random sets and point
processes, but also between the dimensions two and three. We therefore treat some of
the resulting cases separately and show how convez mean bodies arise.

3A. PLANAR RANDOM SETS

Let Y C R? be a stationary random closed set, obeying some mild regularity
conditions. These are fulfilled, e.g., if Y belongs to the extended convex ring &2 (ie. Y
is a locally finite union of convex bodies), or if the boundary of ¥ consists piecewisely of
Jordan arcs. Then, in a compact and convex ‘sampling window’ I C R? any realization
Y(w) of Y allows a finite boundary measure S1(Y(w) N K,-) which is a nonnegative
measure on the unit circle Q (this measure is the two-dimensional version of the surface
area measure considered in section 2). Since

/ ¢ S1(Y(w)NK,dz) =0,
Q

by Minkowski’s theorem there is a unique convex body M C R? with S1I(Y(w)NK,:) =
S1(M,-) (and obeying fa ah(M,z) dw(z) = 0), the convezification co (Y(w) N K) of
Y(w) N K. This convexification has been studied by Pach (1978) and Fary and Makai
(1982) (for geometric reasons) and in Weil (1993a) (for random sets). From co Y(w)n
K), a mean shape of ¥ can be obtained by a limiting procedure, in analogy to the
definition of the boundary length density L 4. We need some integrability conditions on
Y, which are omitted here (see Weil (1993a), for details).
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Theorem 5. Let Y be a stationary random closed set in R? and K C R2? g conves
body. Then the mapping w — h(co (Y (w) N K),-) is measurable, the ezpectation

E h(co (Y NK),")
ezists, and (under some integrability condition) the limit

BT, = fim PR ™)

18 independent of K and is the support function of a convez body K(Y).
We call K(Y) the mean body of Y.

The star in 7% (Y, ) refers to the choice of the convexification as a ‘centred’ set. If
Y and the reflection —Y" have the same distribution, then I (Y) is centrally symmetric

with center 0. We may also call the function h*(Y,-) the support density of Y. The
boundary measure Sy(K(Y),-) fulfills

E Si(co (Y NK),")
A(rK) ’ (8)

S1(K(Y),:)= lim
independently of K. We have
S1(K(Y),Q) = La,

hence S1(K(Y),") is a local version of the boundary length density. If Y is isotropic,
h4(Y,") is a constant (a multiple of L4), hence K(Y) is a circle and S;(K(Y),.) is a
multiple of A, but the reverse implications are not true. (8) follows immediately from
(7) with the well-known relation between the support function 2(K, ) of a convex body
K and its surface area measure. In particular, in the plane we have

Si(K, A) = /A(/z."(K,m) + h(K,z)) dA(z), A C Q, (9)

if K is smooth enough, the circle ) is parametrized by the angle z,z € [0,27), and A"
denotes the second derivative with repect to this parametrization. For arbitrary K, a
corresponding relation holds in the sense of Schwartz distributions.

The boundary Y of Y is (under the regularity conditions we mentioned) a 1-
dimensional random set (a fibre process in the sense of Stoyan et al. (1987)). For 9Y’,
the distribution Pay of the tangential direction in a ‘typical’ point of Y is usually called
the rose of directions, Pay is an even probability measure on . The zonoid Z(9Y)
generated by L4 Ppy is the Steiner compact associated with Y. It follows easily from
the above considerations that the symmetrized boundary measure of K (V') fulfills

SIE(Y),.) + Si(~K(Y),.) = /2 LaPoy,

or equivalently,

K(Y) + (~K(Y)) = a2 2(0Y),

where ¥,/ is again the rotation by 90°. Hence, in those cases where K(Y) is not
centrally symmetric, I{(Y") carries more information about the random set Y than the



ACTA STEREOL 1993; 12/2 81

rose of directions (or the Steiner compact) of the boundary set 9Y. The difference is
that, in K(Y'), the boundary points are taken into account together with their outer
normals.

In Weil (1993a) a number of further properties of the mean body K(Y') are studied.
We mention only the following observation which also gives a practical procedure for
estimating K(Y'). Assume that a realization Y(w) of Y is observed in the unit square
W and, for practical purposes, the boundary of Y (w)NW is given (or approximated) as
a sequence of segments. If we order these segments clockwisely according to their outer
normals, they fit together to form a closed convex polygon, namely K; = co (Y (w)N w).
Due to the edge effects, K is not yet an unbiased estimate for K(Y). In order to obtain
such an estimate, we have to consider in addition the rectangle K, which is the sum
of those segments of O(Y(w) N W) which lie in the upper or the right boundary of W.
Then the Minkowski difference K, — K, is an unbiased estimate of K(Y). In general,
K — K, need not be a convex body, since K, is not automatically a summand of I,
but if we repeat this sampling procedure independently k times and take as K} and K¥
the corresponding sampling means (in the sense of Minkowski addition), the difference
K* — K¥ tends to K(Y) almost surely (a precise statement is possible using the support
function).

3B. SPATTAL FIBRE PROCESSES

A stationary spatial fibre process X can be described either as a point process of
curves or a random 1-dimensional set. For the analysis of X which we have in mind,
both representations are equivalent. The main quantities of ¥ which are of stereological
interest, are the length density Ly and the directional distribution P, (the distribution of
the tangential direction in a ‘typical’ point of X, the rose of directions). If E,, ..., Ej are
planes with (randomly chosen) normal directions Uy, ..., Uk, respectively, the intersection
X N E; is (almost surely) an ordinary stationary point process, the intensity of which
depends only on u;. We denote it by y(u;). As is well known (see e.g. Stoyan et al
(1987) or Weil (1987)),

y(u;) = Lv/Q |cos a(u;, z)| dPy(z).

Since y(u;) can simply be estimated by counting the number of intersection points of
Y(w)NE;, the basic stereological problem is to estimate Ly and Py from Y(uy), oy y(uy).
This situation fits now easily into our previous considerations if we define the mean
body I{(X) associated with K as the zonoid in R? which is generated by the measure
1t =Ly Py. Then

Y(wi) = MK(X),w), i=1,.. k,

and the optimization method described in 2C is applicable.

3C. BOOLEAN MODELS

A Boolean model Y is a random closed set which results as the union of a stationary
Poisson process X of compact sets, the grains. X is uniquely determined by two quan-
tities, the intensity v and the shape distribution Py (also called the distribution of the
primary grain). We do not assume isotropy and, moreover, in the planar case the grains
can be non-convex (but with similar regularity conditions as in 2A; i.e. either they are
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finite unions of convex bodies or they are bounded by finitely many Jordan arcs). For
the intensity v, we assume 0 < v < co. Py is a probability measure on the ‘space of
shapes’ Cy, i.e. the collection of compact sets (of the described manner) centred at the
origin (but not necessarily centrally symmetric). A familiar choice of a center is the
mid-point of the circumsphere.

We consider the two-dimensional situation first. Then, the union set Y allows a
mean body K(Y) as in 2A. On the other hand, for each C € Cy, the convexification co C
is defined as in 2A. coC is a planar convex body which contains (a translate of) the
convex hull conv C of C. Both sets (the convexification and the convex hull) coincide

(up to a translation), if and only if C' is convex. For the Poisson process X, a mean
body K(X) can simply be defined by

h(K(X),") = v /C h(co C,-) dPy(C). (10)

For non-convex grains, the body vy~ ! K(X) is larger than the set-valued expectation of
Py, as it is discussed e.g. in Vitale (1988) (see also Weil (1993a)). The latter mean body
would result if, in the integral in (10), co C is replaced by conv C. Of course, for convex
grains the two notions of mean bodies (or expectations) coincide. Our definition of
K(X) has the advantage, that we get a simple connection between K (V) and K(X) (in
the planar case) which allows to estimate K (X) from observations of Y. The following
result is mentioned in Weil (1990) (more details will appear in Weil (1993b)). We denote
by A and L the mean area and mean boundary length of the particles of X, i.e. the
expectation of the area A and the boundary length L w.r.t Pp.

Theorem 6. For a Boolean model Y in R? with underlying Poisson particle process
X, we have

WE(Y),) = e " h(K(X),"). (11)
If K € K3, then

E h(co(Y NK),") = A(K) e MK(X),")+ h(K,-) (1 —e ). (12)

As a direct consequence of (9), (11) can be transformed into a relation for boundary
length measures, namely

SI(K(Y),7) =™ Si(K(X), ) (13)
(13) is the local version of the familiar stereological equation
Ly= e“”iyf, (14)

between the length density Ly of ¥ and the characteristics of X (see Stoyan et al.
(1987) or Weil (1988)). As we discussed in 3A, these local versions are in general
non-symmetric and, therefore, carry more information than the corresponding relations
between the roses of directions of the boundaries Y and X. Such a relation follows
from (13), if we replace X and Y by —X and —Y, add up the corresponding equations,
and apply the rotation ¥,/;. If we normalize the resulting measures with the help of
(14), we get the information that the roses of directions of Y and 0X coincide, a result
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which can be obtained directly from the independence properties of Poisson processes.
The rose of direction was used recently in Molchanov and Stoyan (1993) and Molchanov
et al. (1993) for a statistical analysis of certain Boolean models.

As was described in 3A in a more general situation, (12) can be used for estimation
in practice and therefore, K(X) can be estimated. In Weil (1993b) this procedure is
described in more detail and used to give an estimator of the intensity (particle number)
7, which turns out to be quite effective for non-isotropic Boolean models.

The three-dimensional situation is more involved, at the present stage. We have to
assume convex grains here and consider the situation, where planar sections Y N E (with
randomly chosen direction) of the Boolean model ¥ C R3 are investigated. As described
above, Theorem 6 can be used to estimate the mean body K(X NE) of the intersection
process X N E. The following result from Weil (1993¢) describes the connection with
the mean body I (X ) (since we assume convex grains here, the mean bodies are defined
by their support functions as Minkowski integrals of the grains as in (10)).

Theorem 7. Let X be a statronary Poisson process of convez bodies in R end E C R?
a random plane with uniformly distributed direction. Then,

E h(K(X NE),) = -3%/1,(11/12(1(()()), ). (15)

Here, on the left-hand side of (15), we consider the set K(X NE) as a two-
dimensional body in R?® and average the corresponding support functions. The resulting
convex body is thus the mean section body of the mean body K(X). Theorems 6 and
7 (together with Theorem 2) imply that the mean body of the spatial Poisson particle
process X is uniquely determined by the planar sections ¥ N E of the union set Y.
However, a practical estimation procedure of that kind is at the moment not apparent
due to the open characterization (and approximation) problem in the class of mean
section bodies.

However, this final result emphasizes once more the importance of recent develop-
ments in convex and integral geometry for advanced estimation problems in stochastic
geometry (and their stereological applications).
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