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ABSTRACT

This paper discusses the concept of area orientation distribution. It gives the
exact area orientation distribution for rectangular and elliptic particles. The behaviour
of these distributions confirms the assumption that area orientation distributions show
a blurring effect around the expected orientation, which depends on the particle shape.
Nevertheless, the area orientation method seems to give correct estimates of the main

orientation of particle systems.
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INTRODUCTION

The investigation of the orientation distribution of particle systems is an
important problem for biologists, material scientists and other researchers. For the
definition of the direction of a particle or of a particle system there are various
concepts. Some of them are based on the orientation of the particle’s boundary and are
thus not very attractive. A natural concept is the use of the direction of the maximum
Feret diameter of the particle, which supplies satisfactory results for well-formed
particles, such as ellipses. But for some special cases unnatural results are obtained by
this method. For example, for a system of equal rectangles orientated all in the same
direction, the orientation distribution would be a degenerated distribution concentrated
on the two directions of the diagonals of the rectangles. This contradicts greatly the
subjective impression, which expects a direction parallel to the longest rectangle edge.
Another concept, the so called area orientation of particles, suggested by Odgaard,
Jensen and Gundersen (1990), seems to be more suitable. This area orientation is given
by the distribution of the direction the chord of maximum length passing a randomly

chosen inner point of a particle. Unfortunately, in the special case of ellipses we obtain
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@ blurring effect around the orientation of the longer axes. The analogous effect for
rectangles has been already mentioned by Stoyan and Benes (1991). In the following
the corresponding area distribution density is calculated exactly which has an
interesting form. Simulations have led to the area orientation distribution for ellipses

given i the last section of the paper.

DETERMINATION OF THE LONGEST CHORD INSIDE OF A RECTANGLE
Cousider a rectangle ABC'D with fixed side lengths a and b, with a>b in a
Cartestan coordinate system, where A lies in the origin, B on the positive x-axis and D
on the positive y-axis, with AB =« and AD =b. A point Z = (2,y) is chosen randomly
in the interior of ABCD, with & and y uniform on [0,a] and [0,b]. Then there exists a
chord of maximum length in the set of all chords which are running through Z. With
probability one this chord is unique. It forms an angle ¢ with the z-axis, 0 <p :%

Because of the symmetry of the problem it 1s sufficient to consider it in one quarter of
ABCD only, e.g. in the rectangle with vertices C,F M, and E, see Fig. 1. It is easy to
sce that the Jongest chord belonging to an arbitrarily choosen point Z is starting in a
vertex of the rectangle ABCD. For the case of Z in the interior of the subrectangle
C'FME only chords starting in A or C'are of interest, because they are always longer
than those starting in B or D. If Z is a point in the triangle ACME, then the chord
starting 1n 4 is the longest one.

More complicated is the case if Z lies within ACFM. Then the longest chord is
starting 1 ', if the distance C'Z is sufficiently long and otherwise it is starting in A.
Geometrical considerations allow a determination ¢! the border line between these two
domains corresponding to A and C.

Let be H a point of this border line. Then both chords passing H starting in A and C
have the same length. The distance AH = l)(a,), using @, for the angle 4 BAH, can

be written as

o 9 . 9
bsinar - \/b2 - a"s'mgcv1 b 2b
, arctang < ay < arctan‘g . (1)

l(a)=a
-1 i I
uz;mza'1 - cosorl\/b2 - uzsnfzr,yl

Analogously the distance CH = Iy(a,) satisfies

a’—b coszag

GCOS()'Q — V b
, 0<ay<arctang, (2)

ly(ay) =

e beos?ary — sinay v”a")‘ - b%os’a,
where a, denotes the angle ¢ FCH, see Fig.1. For an inner point Z of ACFM the
longest chord is starting in C if and only if Z belongs to the sector bounded by
arctanggal garctan%J and the curve described by (1). If Z is a point outside of this

sector, then the longest chord passing Z is that which starts in A.




ACTA STEREOL 1993;12/1 13

D F C D

17

I
fuxl]
I
(ws}

*
7

1]
or

Fig. 1. Subdivision of the rectangle into regions, where an inner point Z connected with
Aor C' generates the longest chord. The border line intersects the straight line
limited by F and M, (a). Otherwise, it lies completely inside of the subrectangle
CFME for a sufficiently great ratlo , (b).

DETERMINATION OF THE AREA DISTRIBUTION FUNCTION FOR A
RECTANGLE

Using the results of the previous section it is possible to determine the
probability that the random angle ¢ formed by the side AB and the longest chord
generated by a random point Z is less than a given value a. Because of the uniformity
assumption, this probability P(p < a) equals the quotient of the area of the set of all
points which generate a maximum chord with an angle less than «a, divided by the
rectangle area. Consequently, with (1) and (2)

o
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0
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Plp<a)= J

1, min(arcsing, arctanza—b) <a.
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The density function of the angle ¢ is very complicated. The exact determination of it

requires to solve fourth-degree polynomials in «, the coefficients of which are depending
2 3\/_

on the ratio ¢ = b It is necessary to distinct the cases 1 <g¢<
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Fig. 2. The density function of the angle ¢ generated by the longer side of the rectangle
i i =a
b )

and the maximum chord passing a uniform point Z for different ratios q=
g=1.1(a) and g =2 (b). The direction of the diagonal is marked by x and the

the  density

expectation of ¢ by o.
Here

most  interesting.

The interval f b g < v6v -9 is
of the angle ¢ is positive in a small neighbourhood of the origin and equal zero in an

interval of positive length behind them. Examples of such density functions are shown
io = 2. It is quite similar

in Fig. 2. a and b. The curve in Fig. 2.b is plotted for a ratio %_
to Fig.3 in Stoyan and Benes (1991). Clearly, if a sign is given to the angles, then their

distribution is symmetric to the "main direction

THE AREA ORIENTATION DISTRIBUTION FOR AN ELLIPSE
Consider an ellipse of half-axis lengths ¢ and b with a > b Again, for a

uniform point Z inside of this ellipse there exists a unique longest chord. The
determination of the density function of the angle ¢ between this chord and the longer
half-axis leads to a fourth-degree polynomial depending on three parameters. The
formulae are still more complicated than in the rectangular case, see Fig. 3.

Fig. 4 shows some estimated density functions of the angle ¢ for different ratios a:b

which are obtained by simulation. For this purpose points with coordinates uniform to
the ellipse have been thrown onto it. To every of this points an approximate value for
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the maximum chord length and its angle ¢ was computed by an iteration procedure

The density function of the angle ¢ was estimated basing on this.

Fig. 3. Intersection of an ellipse into regions, where the angle v between the maximum

chord and the longer half-axis has values between given limuts (differcnces ol 5
degrees, a:b = 1.2).
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Fig. 4. Density function of the .ingle ¢ between maximum chord and longer half-axis for
different ratios a:b.
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In contrast to the rectangle, this density function has a maximum value at a = 0.
This fact follows from the smoothness of the boundary of the ellipse. The area
orientation density functions for ellipses depend on the elongation of the ellipses. The
more elongated the ellipse, the more concentrated is the density function around the

direction of the longest half-axis. Clearly, for circles a uniform distribution is obtained.

DISCUSSION

For the particles considered the area orientation distribution shows remarkable
deviations of the angles from the expected main direction. However, since the
deviations are symmetric with respect to this direction, the mean of a sample of a
angles obtained by the area orientation method is an unbiased estimator of the main
direction. Also for particles of different shape and orientation it can be expected that
the area orientation method gives reasonable results for the main direction.
The investigation of the variability of the particle orientation seem to be much more
difficult. Probably complicated deconvolution procedures are necessary in order to
extract useful information from empirical area orientation distributions. Perhaps, the

results of this paper may help in the interpretation of such distributions.

ACKNOWLEDGEMENT
The author thanks Prof. D. Stoyan for the inspiration and Dr. A. Schwandtke

for her comments and helpful discussions.

REFERENCES

Odgaard A, Jensen EBV, Gundersen HJG. Estimation of structural anisotropy based
on volume orientation. A new concept. J Microsc 1990; 157: 149-162.

Stoyan D, Benes V. Anisotropy analysis for particle systems. J Microsc 1991; 164:
1569-168.

Received: 1992-05-22
Accepted: 1993-03-12



